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The graphs of vine copulas

The description by pair-copulas can be
characterized by graphs (trees)
Property: there are d − 1 graphs for a
d-dimensional vine
T1 is a tree over 1, . . . ,d
The vertices of the next graph are the
edges of the previous one
If there is an edge between two vertices
in Tj+1, then the corresponding edges
had a common vertex in the previous
graph Tj

The tree Tj has d + 1 − j vertices and
d − j edges

Figure: A graph of a
5-dimensional D-vine
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Types and practical applications of the vine copulas

C-vine: the graphs are star-shaped
D-vine: the graphs are paths
Estimation in practice, e.g. by the Kendall-τ : the most important
pairs are estimated separately, then the others together -
universally by the same copula (this is the so-called simplification)
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Statistical methods

Parameter estimation: by maximum likelihood, iteratively for the
levels of the graph, first for the copulas of the first level
How to choose the pair-copulas? By the previous tests the fit can
be investigated
Having estimated the copulas of the first level, the same may be
carried out for the next level (after transforming the data)
The iteration is continued until the remaining levels can be
simplified as it was mentioned before
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Practical applications

It was possible to fit the whole model for a 16 dimensional data set
In the first step the spanning tree is sought for which the sum of
the Kendall-τ values over the edges is maximal
Truncation: we assume every copula beyond a given level being
independent
Simplification: we assume every copula beyond a given level
being identical
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Goodness of fit

The choice from nested models can be based on the loglikelihood
For non nested models the so-called Vuong teststatistics can be
applied, which is als based on the loglikelihood function and has
information theoretical background (R package: CDVine)
The tests seen previously (K-funcion-based, Rosenblatt
transforms) can be generalised – critical values can be based on
the weighted bootstrap; here also the Cramér-von Mises type
tests are the strongest
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Random matrices: main questions

X : Ω → MN×N is a measurable transformation (considering the
set of matrices as a Euclidean space)
N is large, so the limit N → ∞ is interesting
Example

Let Xij be symmetric (Xij = Xji ), independent, identically, normally
distributed with mean 0 (Wigner matrix)
X T X/T (X is a matrix of size N × T ): Wishart matrix, this
corresponds to the covariance matrix estimator (it is of size N × N)

Eigenvalues are random variables as well. It is not easy to
determine them one by one, but the spectrum (the set of all
eigenvalues) can be investigated
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Limit theorem

Let X be an N × N symmetric matrix having elements, which are
independent and have standard normal distribution (Wigner
matrix). The spectrum of X has N elements: λi(i = 1, . . . ,N).
The weak limit of the spectrum in case of the Wigner matrix is the
so-called Wigner (semicircle) distribution (Wigner, 1950)

lim
N→∞

1
N

N∑
i=1

δλi/(2
√

N) = ν

where the density of ν is 2
π

√
1 − λ2 for −1 < λ < 1.
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The idea of the proof

Let

νN =
1
N

N∑
i=1

δ λi
2
√

N

, YNk =

∫
xkdνN

random variable (νN is a random measure)
It can be seen that E(YNk ) →

∫
xkdν where ν is the

Wigner-distribution and Var(YNk ) ≤ ck
N2

The Borel Cantelli lemma implies that

P
(
|YNk − E(YNk )| >

1
N1/4 i.o.

)
= 0

Thus the sequence νN is tight, the moments of the limit for any of
its subsequence are unique
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Carleman condition

If
∞∑

k=1

1

µ
1/2k
k

= ∞

there can be at most one random variable, which has moments µk .
Proof: in this case the characteristic function is given by its Taylor
expansion
This condition holds for the Wigner distribution
Generalizations

The proof can be carried out for non normally distributed matrix
elements as well
If the elements of the matrix are stable distributions with infinite
variance, then the limit distribution of the spectrum is not bounded
(it has a tail of polynomial order)
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Wishart matrix

Let X be an N × T matrix, with elements that are
independent, identically distributed
with expected value 0
and variance 1
κ = E(X 4

ij )

Then for W = X T X/T we have
E(Wij) = 0, if i ̸= j and 1, if i = j (notation: δij )
Var(Wij) = (1 + (κ− 2)δij)/T
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Degenerate limit distribution

Var(Wij) → 0, if N is constant, T → ∞ and so Wij → I.
This remains true if T → ∞ and N → ∞ so that N/T → 0
If T < N, Wij is degenerate, the weight of the 0 eigenvalue is
(N − T )/N. Thus if N → ∞ so that T is constant, then the
spectrum tends to 0 (enough: N/T → ∞).
Thus nontrivial limit distribution can only be expected if N/T → c
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Marchenko-Pastur theorem (1967)

Theorem:
Let X be a random matrix of size N × T (T > N), having
independent, identically distributed elements with expected value
0 and variance 1,
W = X T X/T is the corresponding Wishart-matrix.
Let the spectral density of W be denoted by ρN;T (λ). Then if
N → ∞ and N/T = r ≤ 1

1
N
ρN;T (λ) →

1
2π

√
(λ+ − λ)(λ− λ−)

rλ
I{λ−<λ<λ+}

where λ± = (1 ±
√

r)2. This is the Marchenko-Pastur distribution
Thus similarly to the Wigner-matrices, the spectrum of the
Wishart-matrices also tends to a deterministic function.
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Properties

The density is concentrated to the interval [λ−, λ+]

In case of r → 0
λ± = (1 ±

√
r)2 → 1

so it tends to the degenerate distribution concentrated to 1(in
accordance to the previous results).
If r > 1 then the limit is the mixture of the degenerate at 0 and the
distribution given in the above theorem
If r → 1 (T → N + 0) then

λ− = (1 −
√

r)2 → 0

as if N > T then the matrix has not full rank, so 0 eigenvalues also
turn up.
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Applications to the covariance estimator

The estimator:

σ̂ij =
1

T − 1

T∑
t=1

ZitZjt

where

Zit = Xit −
1
T

T∑
t=1

Xit

The asymptotics of the Marchenko- Pastur theorem can be
applied here
But in practice the elements of the matrix are not independent!
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Real data

Empirical spectrum for
the 406 stocks in the
S& P 500 index and the
fit of MP distribution
The largest eigenvalue
is seen on the separate
figure
After having removed
the intermediate
eigenvalues (describing
the sectoral effects)
there is still systematic
deviation from the MP
distribution
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Risk measures

Possibilities:
sd (standard deviation,
possibly only for the
losses)
VaR (a given high
quantile of the loss)
cVaR (expected loss, if
we loose more than the
VaR )
mVaR (modified
formula, the higher
moments are also
used) Figure: mVaR, actual VaR and VaR based

on Gaussian dist., when the actual loss has
a skewed t-dist.
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Properties of a coherent risk measure

Additivity: R(X + c) = R(X ) + c
Homogeneity: R(aX ) = aR(X )

Monotonicity: if X ≤ Y then R(X ) ≤ R(Y )

Subadditivity (convexity):
R(wX + (1 − w)Y ) ≤ wR(X ) + (1 − w)R(Y )
Shows that the diversification is preferable!
VaR does not fulfill this. Example: P(Z = 1) = 0.91,
P(Z = 90) = 0.04, P(Z = 100) = 0.01, P(Z = 200) = 0.01.
Z = X + Y : X = {Z : Z < 100}, Y = {Z : Z ≥ 100}
VaR0.95(X ) = 1, VaR0.95(Y ) = 0, but VaR0.95(Z ) = 90
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Properties of a coherent risk measure/2

If the loss-distribution is elliptic, then VaR is already convex
It can be estimated: in case of VaR several nonparametric
methods can also be applied

By empirical quantile (not robust)
Weighted average of quantiles

It is important that the authorities should accept the chosen
method
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CVaR

Possible definitions:

Cα− = E(X |X ≥ VaRα)

Cα+ = E(X |X > VaRα)

These are identical for continuous distributions
Properties:

Cα =
1

1 − α

∫ 1

α
VaRβdβ = min

C

{
1
C

+
1
α

E(X − C)+
}

Further properties of the CVaR:
It is a coherent risk measure
It is closed: for Xn → X and R(Xn) ≤ 0 we have R(X ) ≤ 0
On the other hand, it is not easy to estimate it if we do not have a
reliable parametric model
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Comparing the models

The estimated risk measure depends on the chosen model
Example: daily logreturn of stocks, the value is 10,000; annual
volatility is 20% (normal vs t4-this is a heavy tailed distribution)

α 0.9 0.95 0.975 0.99 0.995
VaRα (norm. dist.) 162.1 208.1 247.9 294.3 325.8
VaRα (t4 dist.) 137.1 190.7 248.3 335.1 411.8
cVaRα (norm. dist.) 222.0 260.9 295.7 337.2 365.8
cVaRα (t4 dist.) 223.4 286.3 356.7 465.8 563.5
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Portfolio-optimization

Aim: to reach the largest return
But: the risk has to be as small as possible
Compromise: the expected value should reach a given value
Approximation: we may have any real number from a stock
(negative values corresponds to short selling)
We assume that the market is liquid, the prices are not influenced
by our trade
We assume that there are no transaction costs
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Portfolio-optimization/2

Let us assume that we intend to find the minimal variance
portfolio:

min
w∈RN

N∑
i=1

N∑
j=1

σijwiwj

The condition:
∑N

i=1 wi = 1
The solution:

w∗
i =

∑N
j=1 σ

−1
ij∑N

j=1
∑N

k=1 σ
−1
jk

Markowitz-problem:
To find the portfolio to the return µ with the minimal risk:
minw∈Π R(w)

The conditions:
∑N

i=1 E(wiYi) = µ,
∑N

i=1 wi = 1
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Alternatives

Efficient mean-variance
portfolios are to be
found on the hyperbola
A riskless asset may
also be held (with
expected return µr )
More general utility
functions may be used
The Sharpe-ratio may
also be maximized:
E(µp − µr )/σp, where
µp is the portfolio return
and σp is the portfolio
standard deviation

Figure: The variance-optimal portfolio and
the one with the maximal Sharpe-ratio.
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Problems in real life

The return distribution is unknown, even its parameters
(expectation, standard deviation) are not known
The parameter estimations differ from their theoretical values, thus
the resulted optimum is different from the real one
The weights have random error
The risk will be higher than the risk of the real optimum
Question: how large is this difference?
If we have an idea about the distributions, we may simulate data
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Simulation

We simulated a dataset of length T
The estimated portfolio, based on the simulation: ŵ . (The real
optimum: w .) Measure:

q0 =

√∑N
i=1

∑N
j=1 ŵiŵjσij√∑N

i=1
∑N

j=1 wiwjσij

the squared root of the ratio of the estimated and real optimums
q0 ≥ 1, it shows the increase of risk due to the estimation error
q0 is a random variable, so its expectation, standard deviation is
important
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The properties of q0

Let N/T be constant and N → ∞. Then sd(q0) → 0, q0 → E(q0).

Figure: The distribution of q0 for different N values. N/T = 0.5
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The properties of q0

If N is constant and T is decreasing, then the expectation and
standard deviation of q0 both are increasing
If N/T > 1, there is no solution, since the covariance matrix
cannot be inverted
If N < T , the problem can be solved, but if N/T → 1 then q0 → ∞
If N is constant and T → ∞, then q0 ∼ (1 − N/T )−1/2,
independent of the expectations and standard deviations

Zempléni, András (ELTE) 29 / 35



The properties of q0

Figure: q0 as a function of N/T , N = 100
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Practical applications

Thus if N is large enough, (N > 100 is enough in general), then
the error can be estimated
q0 ∼ (1 − N/T )−1/2

Thus the needed sample size can be calculated, to a given error:
T = N/(1 − 1/q2

0)

E.g. if N = 100 and q0 = 1.2 then T = 328, it is increasing linearly
in N
But if we can tolerate only a smaller error, or if there are more
stocks, then one may need a much longer data sequence
On the other hand there is no stationarity for such a long time
period
Thus the portfolio optimization shows a substantial instability even
under the used idealistic conditions
If we consider not only the risk, but the weights themselves, then
the situation is even worse, the fluctuations are well over 100
percent. So this problem is almost hopeless.
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Practical observations

The empirical covariance matrix has typically one large eigenvalue
The basis portfolio, corresponding to it has mostly positive weights
Thus this is the joint fluctuation of the economy
Theoretical background: Frobenius-Perron theorem. It states that
a positive definite matrix consisting only positive elements has a
largest positive eigenvalue which has multiplicity one and for
which the corresponding eigenvector has positive elements
Although the empirical covariance matrix has not always only
positive elements, most of them are positive, and the theorem is
true in this case, too
The medium eigenvalues, which represent 90-95% of the total
variance, correspond to the sectoral effects
They bear substantial information
The rest (typically 90-95% of the eigenvalues) is the noise
Filtering is needed in order to suppress this noise, especially as
the eigenvalues of the inverse matrix are the reciprocal of the
original eigenvalues
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Further eigenvalues

Let us search for the lower dimensional subspace that is
responsible for most of the variability
If it is k -dimensional, then its basis consists of the the
eigenvectors corresponding to the k largest eigenvalues
The number of principal components can be determined by fitting
a Marchenko-Pastur distribution to the empirical spectrum and to
use those, which are outside the accepted range
Instead of the further eigenvalues we may take their average.
Thus the new covariance matrix is

σij =
k∑

l=1

λlv
(l)
i v (l)

j + λ

N∑
l=k+1

v (l)
i v (l)

j

where λ1 ≥ λ2 ≥ · · · ≥ λN are the eigenvalues, v (1), . . . , v (N) are
the corresponding eigenvectors
Thus the smallest eigenvalues have increased
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Conclusion, further ideas

The problem will be solvable for T < N as well, as the 0
eigenvalues were replaced by positive ones
The divergence vanishes at the point N/T = 1, the value of q0 will
not be too large, even when N/T is small.
But the fluctuation of the portfolio weights does not decrease
substantially
There are other methods, like Lasso or robust models
Based on the robust models, confidence intervals might be
constructed, and the worst cases of the conf.int. might be used in
the portfolio optimisation
mean-VaR or mean-cVaR portfolios might also be constructed
Instead of Pearson-correlation, pairwise tail-dependence might be
used (with 1’s in the main diagonal)
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