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Dependence measures for copulas

Linear correlation: R(X ,Y ) = E(X−EX)(Y−EY )
D(X)D(Y )

disadvantages:
It is sensitive to outliers
It changes if we transform the marginals

Alternatíves: Kendall-τ :

τ(X ,Y ) = P
[
(X − X̃ )(Y − Ỹ ) > 0

]
− P

[
(X − X̃ )(Y − Ỹ ) < 0

]
.

Spearman-ρ:

ρ(X ,Y ) = 3P
[
(X − X̃ )(Y − Y ′) > 0

]
− 3P

[
(X − X̃ )(Y − Y ′) < 0

]
where (X ,Y ), (X̃ , Ỹ ), (X ′,Y ′) are independent, identically
distributed
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Properties

These are so-called rank correlations (just the sequence of the
values is interesting)
These are not sensitive to outliers
Their computation with the copula

τ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

ρ(X ,Y ) = 12
∫ 1

0

∫ 1

0
[C(u, v)− uv ]dudv .
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Further properties

Both are invariant for monotonic transformations Let κ = ρ or
κ = τ . Then

−1 ≤ κ ≤ 1; κX ,X = 1, κX ,−X = −1.
If X and Y are independent, then κX ,Y = 0.
κX ,−Y = κ−X ,Y = −κX ,Y .

The dependence measures for the copulas are functions of the
parameter(s), so from their estimators we may get at the same
time an estimator for the copula. Example for the Gumbel copula:
τ = 1 − 1/β.
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Applications

For the Gauss copula the pairwise correlations:

Rij = sin
(
πτ(Xi ,Xj)/2

)
)

The choice between copula-types is important (e.g. by the tail
dependence or by theoretical considerations). It is an empirical
fact that for financial portfolios the extreme losses appear for
every stock at the same time (stock exchange fall) - this implies
the probable appearance of the tail dependence.
The different models may rise to substantial differences between
the estimators for the probabilities.
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Time dependence

Figure: Time series of the estimated
dependence parameter

The figure shows the
dependence parameter of
the fitted Gumbel copula,
based on windows of 251
days (one year).
The blue lines represent the
0.003 and 0.997 bootstrap
quantiles for the parameter
of the first year.
The dependence has
obviously strengthened due
to the financial crisis.
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Goodness-of-fit

In order to reduce the computational burden, the dimensionality
has to be reduced. The K -function:

K (ϑ, t) = P(F (X ) < t) = P (Cϑ(F1(X1), . . . ,Fd(Xd)) < t)

It can be computed for Archimedean copulae as

K (ϑ, t) = t +
d−1∑
i=1

(−1)j

i!

[
φϑ(t)j

]
fi(ϑ, t)

where

fi(ϑ, t) =
d i

dx i φϑ(x)|x=φϑ(t).

If it has no closed form, it can still be approximated by simulations
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The test based on the K function

Empirical version:

Kn(t) =
1
n

n∑
j=1

χ(Ej < t) t ∈ [0,1]

ahol

Ej =
1
n

n∑
i=1

χ
(
Uj,1 < Ui,1, . . . ,Uj,d < Ui,d

)
Kendall process κn(t) =

√
n (K (ϑn, t)− Kn(t)) .

Cramér-von Mises type statistics:

Sn =

∫ 1

0
(κn(t))2Φ(t)dt

where Φ is the weight function
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The test

Formal test can also be got from the statistics Sn (if it is large, we
reject the fit).
The asymptotic distribution can be computed only in case of
known copulae.
In those realistic case, where C is estimated, we may get the
critical values via simulations
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Comparison of copulae
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Rosenblatt-transform

The test of Breyman (Breymann et al, Berg & Bakken) is based on
the Rosenblatt transform R : (0,1)d → (0,1)d

R(u) = (e1, ...,ed), where e1 = u1 and for i ≥ 2

ei =
∂ i−1C(u1, ...,ui ,1,1, ...1)

∂u1...∂ui−1
/
∂ i−1C(u1, ...,ui−1,1,1, ...1)

∂u1...∂ui−1
.

Property: the distribution of U is the C copula, if and only R(U) is
the independence copula.
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Breymann-test: testing independence

YB =
∑d

i=1 Φ
−1(Ei)

2 has just the chi-squared distribution, with
degree of freedom d .
If it is substituted into its own distribution function, we get the
uniform distribution.
It can be tested e.g. by the Anderson-Darling test.
Berg and Bakken developed the method further, achieving its
consistency.
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New test-procedure, based on the weighted bootstrap

Bootstrap simulations are needed to determine the critical values
for the goodness of fit tests
But: the model has to be fitted for every bootstrap sample, which
is very slow in high dimensions
The difference between the empirical copula and the fitted
parametric model is a natural statistics. Its limit distribution:

√
n (Cn − Cϑn) =

√
n (Cn − Cϑ + Cϑ − Cϑn) → Cϑ − C∗ϑ

Because of the limit theorem for the weighted bootstrap sample, it
can be approximated without re-estimating the parameter(s).
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Steps of the test procedure

To calculate Cn and the determination of a suitable estimator for ϑ
The calculation of the Cramer- von Mises statistics:∫

[0,1]

(
Cn(u, v)− Cϑn(u,v)

)2 dCn(u, v) =∑n
i=1

(
Cn(Ui,n,Vi,n)− Cϑn(Ui,n,Vi,n)

)2

The calculation of the weighted bootstrap statistics
These allow for estimation of the critical values (or the p-value)
The method is much faster than the parametric bootstrap
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Practical experiences

The strength of the method depends on the estimation: the
maximum-pseudo likelihood gives good results in general
It can be calculated quickly in 3-5 dimensions
It is already contained in the package copula
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Fitting multivariate models

We have learned
Multivariate stable distributions
Multivariate extreme-value distributions
Multivariate Pareto distributions
Copulas

So it looks as we would only need to choose from the models
However, bootstrap simulations are needed to determine the
critical values for the goodness of fit tests
But: the model has to be fitted for every bootstrap sample, which
is very slow in general in high dimensions
We shall see ideas for solution
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Models

The structures are nonparametric, but to the estimations we need
models
Parameter estimation: e.g. by maximum likelihood method
Number of parameters:

If too few (e.g. we have only one parameter for a typical
Archimedean copula), in general the fit is not good enough
If too many (e.g. one to each pairs in case of a Gauss copula) then
the estimators will not be reliable
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Practical experiences in high dimensions

The inference is usually based on the pseudolikelihood (here the
margins are estimated nonparametrically)
These are neither independent nor a sample with uniform
distribution
The error of the estimators (in case of single parameter
Archimedean copulas) is decreasing if the dimension increases
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Confidence intervals

The coverage probability of the ML-based confidence interval for
the copula parameter as a function of the dimensions
It is OK for known margins, but in case of unknown marginals it
dramatically decreases for high dimensions
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Even higher

The methods seen previously can be realized in the range of 2-4
dimensions
For even higher dimensions the main problem is the lack of the
needed sample size to a reliable analysis (it should grow
exponentially with the dimensions)
Some simplifications are needed:

Rarity conditions (Lasso and its versions), but it is not realistic for
most of real data (e.g. at direct estimation of the covariance matrix)
Dimension reduction
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LASSO method

LASSO=least absolute shrinkage and selection operator
Method for L1-regularization: it optimizes under the condition of
the L1 norm of the coefficient vector (portfolio weights)
Typical realization: addition of λ

∑N
i=1 |ϑi | to the target function to

be minimized (e.g. in the least square method)
λ determines the strength of the regularization, its choice is not
trivial
Application: portfolio optimization (typically we get less variable
weights)
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Estimation method in high dimensions: pairwise
likelihood

Its definition:
n−1∏
i=1

n∏
j=i+1

f2(xi , xj ;ϑ)

So only the pairwise dependence is to be taken into account in the
model
It is easier to calculate (important in really high dimensions)
Example: spatial model (point process)

ϑ̂ = argmax
T−max k∑

t=1

∑
k∈K

s∑
s1=1

s∑
s2=1

log f2(zs1,t , zs2,t+k ;ϑ)

where z is the observed value, s denotes the sites, t the time and
K is a chosen index set (e.g. 0,1,2,4,8,..)
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Copulas in high dimension: vine copulas

These structures may be used in high dimensions as well
They are based on bivariate copulas
The further structure is determined by a graph

The density function of the copula: c12(x , y) =
∂2C(x ,y)
∂x∂y

Thus the density function of the original distribution:
c12(F1(x),F2(y))f1(x)f2(y)
Conditional density: f (x |y) = c12(F1(x),F2(y))f1(x)
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Construction based on pair-copulas

In 3 dimensions:

f (x1, x2, x3) = f1|23(x1|x2, x3)f2|3(x2|x3)f3(x3)

= c12|3(F1|3(x1|x3),F2|3(x2|x3); x3)c13(F (x1),F (x3))

× c23(F (x2),F (x3))f1(x1)f2(x2)f3(x3)

The decomposition is not unique: there are 3 decompositions in 3
dimensions, but in 5 dimensions there are already 240
Simplification: we omit the dependence of the conditional copulas
on the variables in the condition:

f (x1, x2, x3) = f1|23(x1|x2, x3)f2|3(x2|x3)f3(x3)

= c12|3(F1(x1),F2(x2))c13(F (x1),F (x3))

× c23(F (x2),F (x3))f1(x1)f2(x2)f3(x3)
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The graphs of vine copulas

The description by pair-copulas can be
characterized by graphs (trees)
Property: there are d − 1 graphs for a
d-dimensional vine
T1 is a tree over 1, . . . ,d
The vertices of the next graph are the
edges of the previous one
If there is an edge between two vertices
in Tj+1, then the corresponding edges
had a common vertex in the previous
graph Tj

The tree Tj has d + 1 − j vertices and
d − j edges

Figure: A graph of a
5-dimensional D-vine
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Types and practical applications of the vine copulas

C-vine: the graphs are star-shaped
D-vine: the graphs are paths
Estimation in practice, e.g. by the Kendall-τ : the most important
pairs are estimated separately, then the others together -
universally by the same copula (this is the so-called simplification)
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Statistical methods

Parameter estimation: by maximum likelihood, iteratively for the
levels of the graph, first for the copulas of the first level
How to choose the pair-copulas? By the previous tests the fit can
be investigated
Having estimated the copulas of the first level, the same may be
carried out for the next level (after transforming the data)
The iteration is continued until the remaining levels can be
simplified as it was mentioned before
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Practical applications

It was possible to fit the whole model for a 16 dimensional data set
In the first step the spanning tree is sought for which the sum of
the Kendall-τ values over the edges is maximal
Truncation: we assume every copula beyond a given level being
independent
Simplification: we assume every copula beyond a given level
being identical
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Remarks

If the bivariate copulae are t-copulae, then the vine-copula is a
submodel of the full d-dimensional t-copula
The choice from nested models can be based on the loglikelihood
For non nested models the so-called Vuong teststatistics can be
applied, which is als based on the loglikelihood function and has
information theoretical background (R package: CDVine)
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Further possibilities for goodness-of-fit

Information matrix-proportion tests
White-type misspecification test
The tests seen previously (K-funcion-based, Rosenblatt
transforms) can be generalised – critical values can be based on
the weighted bootstrap; here also the Cramér-von Mises type
tests are the strongest
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