Price fluctuations: Lecture 6

Zempléni, Andras

Department of Probability Theory
Faculty of Sciences
ELTE

Zempléni, Andrés (ELTE) 1/23



Bootstrap (Efron, 1979)

@ Resampling method, for investigating the variances of our
estimators, to check the fit of the models

@ There are many different versions worked out since then, it is one
of the most quickly developing area of the statistics

@ Its advantage: it is flexible with respect of conditions on the
distribution of the sample/statistics
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Bootstrap method - introduction

e Xi = {X{,..., Xy} - sampling with replacement from the original
sample
@ P, is its distribution
@ ingeneralm=n
@ Difficulties in practice:
Q@ x— P depends on the chosen model

@ P — x* the many repetitions are computer-intensive
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The i.i.d. bootstrap

@ Let X1, Xo, ... bei.i.d. random variables with (unknown)
distribution function, F

@ T, = ty(Xn; F) the random variable (statistics) of interest, its
distribution: G,

@ Our aim: to estimate the distribution of G,
@ Bootstrap method:

e For given X, we take an m-element sample with replacement
X ={X{, ..., X5}
n

e The distribution of X;*: F, = n=13" éx,
i=1

° Trt;,n = tm(Xpm: Fn)

o Repetitions = G 5
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Fundamental theorem (Efron)

@ In the case above, if 02 = Var(X;) is finite, and the statistics is the
standardized sample mean

Xn— 1
g

Tn:\m

then
lim sup [P(T5, < Xx) —®(x)] =0

n—oo
a.s.

@ The proof is based on the Berry-Esséen theorem (it gives the
speed of the convergence at the central limit theorem), the
convergence in sup |Gp n(X) — Gn(X)| can be even quicker than

X
that of the classical normal approximation.

@ The approach can be generalized to many cases (smoothness is

required)
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A counter-example

@ In some cases the estimator is not consistent (Singh, 1981):

Definition
{Xn}n> 1 is m-dependent foran m > 0, if { Xy, ..., Xk} and
{Xk+m+1,-..} are independent for every k > 0.

@ Notation: o2, = Var(X;) + 237" Cov(Xy, Xi41)
@ Let the statistics to be estimated: T, = \f (Xn— 1)
@ lIts bootstrap counterpart: 7; , = Vvn (X —Xn)

Theorem

Let {X,}n> 1 be a stationary m-dependent sequence of r.v.s, EX| = p,
o2 = Var(X;) € (0,00), 273" Cov(Xy, Xi;) # 0 and 02, # 0. Then

lim sup [Pu(T7p, < x) = P(Th < x)[#0

n—oo
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Correction in case of confidence intervals

A refinement is appropriate to the naive, empirical quantiles. The
BCA (bias-corrected and accelerated)-method for determining the

limits:
A Za—i-Zo
F1io —
{ <z°+1—a<za+zo)>}

@ where F~1 is the empirical distribution function of the bootstrap
statistics

z% is the standard normal a-quantile
Zg is a term for correcting the bias

a corrects the acceleration of the increase of the variance

If a=0and z, = 0, the value is exactly F~' (a), the empirical
a-quantile.
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The motivation and application of the BC-formula

@ If applying a monotonic transformation m(+9) to our estimator, the
result is normally distributed:

m(9) ~ N (m(¥) — zo(1 + am()), 1 + am(v)).

@ Then, because of the monotonicity P({) < 9) = ®(zy), zo can be
easily estimated

@ The estimation of a can be got from the skewness of the derivative
of the loglikelihood function
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@ Confidence interval for the correlation:

e the standard interval (it is based on the normality of the empirical
correlation coefficient) is symmetric — not always realistic for small
samples

e Boostrap quantiles may be biased

o The BCA method can give an asymmetric interval, its coverage
probability is usually more exact

@ Similar problems arise in extreme-value applications (VaR
estimation)

@ It is a question, whether the parametric or the nonparametric
bootstrap is worth using (the parametric is based on an assumed
model, like normality of the sample and it gives usually a more
cautious - wider - interval)

@ Bootstrap may fail in high quantile estimation (e.g. for the upper
end-point estimation), because the limit is a random variable
instead of ¢
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The m out of n bootstrap

@ If the usual bootstrap does not work, quite often it helps if we take
samples of size m< n

@ In this case even sampling without replacement is possible, which
may have better properties

@ Bickel and Sakov (2008) give an algorithm for finding the optimal
m - valid for the original sampling scheme (with replacement). The
resultis m ~ n, if a sample of nis good as well.
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@ Let X; be an i.i.d. sequence with expectation 1, and standard
deviation o

@ We test the hypothesis ;. = 0 using the statistics v/nXp,

@ Itis a good bootstrap algorithm to take samples from the
"residuals" X; — X,

o If we consider the bootstrap distribution of v/n 7:, then its
quantiles are not consistent (as we shall see on the next slide)

@ For a fixed m, when n — oo the limit distribution of \/m X/,
depends on m (it is constant for all m just for the normal
distribution)
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Example/2

e vm(X,, — X,) — N(0,0) if n,m — oo

@ Sovm X,, ~ N(vm Xp,0) if m— o

e vm X, =+/m/nyn X, — N(0,V/\o) where X\ = limm/n

@ We get the correct result in case of m/n — 0 (otherwise there is
additional randomness in the limit)
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The choice of m

@ The bootstrap distribution does not change much near the
optimum
@ If mis too large or too small, then the bootstrap distributions are
different
@ Thus the algorithm:
Q Letmj=[g/n] (0<qg<1)
@ Let us determine the distribution of T, for all m; by simulation

Q Chogse the m for whi'ch m= argminp(T,’;,j:,,, 7,-;'#3,") '(where pisa
metrics, consistent with the convergence in distribution - e.g.
Kolmogorov-Smirnov metrics)
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Applications for the dependent case

Circular block bootstrap (CBB)

Q Yi=Xt .., (We continue the time series from the beginning, n is
the length of the series)

Q Letiy, b, ...inbe asample with replacement from the uniform
distribution over {1,..., n}

© For a given block size b let us create ' = mb (0’ =~ n)
pseudo-observations:

(*k—1)b+j: i+j—1, Where j=1,....b; k=1,....m

© Computation of the statistics of interest from the
pseudo-observations:

*

Yy=) (Y +...+Y)
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Selecting the block-size (Politis & White)

FOoo={Xn:n<0}, F* = {Xn:n>k}

{X;: te Z } is strongly mixing, if ax(k) — 0 (k — o), where
ax(k) = sup{|P(ANB) — P(A)P(B)| : Ac F°__,B € F°}

—0o0)

y
Theorem

Let us suppose that E| X819 < oo, 3 kz(ax(k))s% < 00
k=1

for a suitable §>0.
Let b= o(N'/?), so if N — oo then b — oc.
This implies MSE(02 ) = & + D2 + o(b2) + o(2)

where D = 2g?(0) and G = kf |k|R(K)

g(-) is the spectral density function
R(-) is the autocovariance function
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Selecting the block-size/2

o The optimal block-size: boy = [(25°)n'/3]
@ Question: how to estimate G and D

. N—|k| _ _
R(k) = N~ kZ1 (Xi — XN)(Xig k) — Xn)
1 if [t € [0,1/2]
At)=<2(1—[t]) if[t]e[1/2,1]
0 otherwise

M = 2m, where m is the index, from where the correlogram
"essentially” equals 0
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Parametric bootstrap

@ Till now, we have not used any models

@ If we have a reliable model, it is worth using also in the bootstrap

@ In the simplest case the samples are simulated from the fitted
parametric model and the statistics is calculated for these

@ When the sample size is small, it is often better than the
nonparametric

@ It is often used e.g. for linear models, when the residuals are
simulated and these are added to the fitted values

@ Selection may be based on the aim of the investigation

o Model selection: nonparametric bootstrap
o Model reliability: parametric bootstrap
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A simple example for parametric bootstrap

@ Question: can the shape parameter of the fitted gamma
distribution be equal to 1?

@ Bootstrap samples are taken from the exponential distribution (this
is the I'(1, A) distribution).

@ Statistics: the ML estimator of the shape parameter for these
samples

@ Bootstrap p-value: the proportion of cases with estimators that
were further away from 1 than the estimator for the observed case
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AR-sieve bootstrap

@ Condition: the process is stationary and estimable with an AR(p)
p
model:  X; — ux = > ¢j(Xi—j — ux) +et, te€Z,where
j=1

ux = EXt, (et)tez i.i.d: E(¢¢)=0 and ¢; is independent from

{Xs;s < t}
@ Estimation of parameters and errors:
e p=? — AIC
4 NX =n Zt 1 Xt
° &1,... ,qﬁp_? — Yule-Walker method
e R = Z,:1 biXi_j, wheret=p-+1,....n from this we

haves“t: Ri—R;, wheret=p+1,....n
@ The steps of constructing the bootstrap sample:

e ¢;: arandom element from the set { £5,1,...,&n}
o Let (X*L,,... X" yip1) = (Ax,- .., fix) (initial values, u is large)
° X/ Mx+2¢/( —fx)+ef tel

@ The bootstrap sample {X1*, X0}
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Weighted (wild) bootstrap

@ Here we do not take a sample, but weigh the original sample
(practically the likelihood function is weighted)

@ Formally: Z,.(k) are the weights, E(Z,(k)) =0and Var(Z,.(k)) =1
wherei=1,...,n,k=1,...,N (N is the number of boostrap
repetitions)

@ In the classical case Z has multinomial distribution

@ The first application was for the regression: y* = y; + Zie;

@ It is worth to use in the heteroscedastic cases

@ Further applications: goodness-of-fit for copulas (we come back to
this approach later)
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Bootstrap and the extreme value models

@ Nonparametric
bootstrap methods

Hatvan

i --- Bootst file, polin. weight
often underestimate the = P;ngserap profile, polin. weights
Uncertainty — Estimated quantile

@ Parametric bootstrap is _E
used the most 3

@ Here a more cautious E
approach is also 1
shown: the median of E
the profile likelihood % : il P ®

intervals for the Figure: Different confidence intervals for the
bootstrap samples return level
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The method of Hall and Weissman

@ m << nis needed in extreme-value models and at the same time
we have to simplify the problem to the estimation of not so
extreme quantiles

@ Fine tuning is possible by parameters (s, t)
o The aim: Dy(t,n,x) == E {(Fém(x) - F(x))z} — ming

@ If the 1 — p-quantile is to be estimated, then it can be rewritten:
= =1

Do(t.n.x) = Di(t,n.F ' (p) = E {(Fyy(F ' (P)) ~ P)?} — miny

. R 2
@ The bootstrap estimators Di(t,m,y) = E’ { (Fé*(t)(y) - F(y)) }

and Dx(t,m,q) = E’ { (Fé*m (,&‘1(q)> B q>2}.

@ One has to pay attention that the ratio log(x)/ log(n) should
asymptotically not change when we use the transform from (n, x)
to the pair (m, y).
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