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Bootstrap (Efron, 1979)

Resampling method, for investigating the variances of our
estimators, to check the fit of the models
There are many different versions worked out since then, it is one
of the most quickly developing area of the statistics
Its advantage: it is flexible with respect of conditions on the
distribution of the sample/statistics
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Bootstrap method - introduction

X∗
i = {X ∗

1 , . . . ,X
∗
m} - sampling with replacement from the original

sample
P∗ is its distribution
in general m = n
Difficulties in practice:

1 x =⇒ P̂ depends on the chosen model

2 P̂ −→ x∗ the many repetitions are computer-intensive
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The i.i.d. bootstrap

Let X1,X2, . . . be i.i.d. random variables with (unknown)
distribution function, F
Tn = tn(Xn;F ) the random variable (statistics) of interest, its
distribution: Gn

Our aim: to estimate the distribution of Gn

Bootstrap method:
For given X , we take an m-element sample with replacement
X ∗

m = {X ∗
1 , . . . ,X

∗
m}

The distribution of X ∗
i : Fn = n−1

n∑
i=1

δXi

T ∗
m,n = tm(X ∗

m;Fn)

Repetitions ⇒ Ĝm,n
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Fundamental theorem (Efron)

In the case above, if σ2 = Var(Xi) is finite, and the statistics is the
standardized sample mean

Tn =
√

n
X n − µ

σ

then
lim

n→∞
sup

x
|P∗(T ∗

n,n ≤ x)− Φ(x)| = 0

a.s.
The proof is based on the Berry-Esséen theorem (it gives the
speed of the convergence at the central limit theorem), the
convergence in sup

x
|Ĝn,n(x)− Gn(x)| can be even quicker than

that of the classical normal approximation.
The approach can be generalized to many cases (smoothness is
required)
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A counter-example

In some cases the estimator is not consistent (Singh, 1981):

Definition
{Xn}n≥ 1 is m-dependent for an m ≥ 0, if {X1, . . . ,Xk} and
{Xk+m+1, . . .} are independent for every k ≥ 0.

Notation: σ2
m = Var(X1) + 2

∑m−1
i=1 Cov(X1,X1+i)

Let the statistics to be estimated: Tn =
√

n(X n − µ)

Its bootstrap counterpart: T ∗
n,n =

√
n(X

∗
n − X n)

Theorem
Let {Xn}n≥ 1 be a stationary m-dependent sequence of r.v.s, EX1 = µ,
σ2 = Var(X1) ∈ (0,∞),

∑m−1
i=1 Cov(X1,X1+i) ̸= 0 and σ2

m ̸= 0. Then

lim
n→∞

sup
x

|P∗(T ∗
n,n ≤ x)− P(Tn ≤ x)| ≠ 0

a.s.
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Correction in case of confidence intervals

A refinement is appropriate to the naive, empirical quantiles. The
BCA (bias-corrected and accelerated)-method for determining the
limits:

F̂−1
{
Φ

(
z0 +

zα + z0

1 − a(zα + z0)

)}
where F̂−1 is the empirical distribution function of the bootstrap
statistics
zα is the standard normal α-quantile
z0 is a term for correcting the bias
a corrects the acceleration of the increase of the variance
If a = 0 and z0 = 0, the value is exactly F−1(α), the empirical
α-quantile.
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The motivation and application of the BC-formula

If applying a monotonic transformation m(ϑ) to our estimator, the
result is normally distributed:

m(ϑ̂) ∼ N (m(ϑ)− z0(1 + am(ϑ)),1 + am(ϑ)) .

Then, because of the monotonicity P(ϑ̂ < ϑ) = Φ(z0), z0 can be
easily estimated
The estimation of a can be got from the skewness of the derivative
of the loglikelihood function
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Examples

Confidence interval for the correlation:
the standard interval (it is based on the normality of the empirical
correlation coefficient) is symmetric – not always realistic for small
samples
Boostrap quantiles may be biased
The BCA method can give an asymmetric interval, its coverage
probability is usually more exact

Similar problems arise in extreme-value applications (VaR
estimation)
It is a question, whether the parametric or the nonparametric
bootstrap is worth using (the parametric is based on an assumed
model, like normality of the sample and it gives usually a more
cautious - wider - interval)
Bootstrap may fail in high quantile estimation (e.g. for the upper
end-point estimation), because the limit is a random variable
instead of ϑ

Zempléni, András (ELTE) 9 / 23



The m out of n bootstrap

If the usual bootstrap does not work, quite often it helps if we take
samples of size m < n
In this case even sampling without replacement is possible, which
may have better properties
Bickel and Sakov (2008) give an algorithm for finding the optimal
m - valid for the original sampling scheme (with replacement). The
result is m ∼ n, if a sample of n is good as well.
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Example

Let Xi be an i.i.d. sequence with expectation µ and standard
deviation σ

We test the hypothesis µ = 0 using the statistics
√

nX n

It is a good bootstrap algorithm to take samples from the
"residuals" Xi − X n

If we consider the bootstrap distribution of
√

n X
∗
n then its

quantiles are not consistent (as we shall see on the next slide)
For a fixed m, when n → ∞ the limit distribution of

√
m X

∗
m

depends on m (it is constant for all m just for the normal
distribution)
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Example/2

√
m(X

∗
m − X n) −→ N(0, σ) if n,m → ∞

So
√

m X
∗
m ∼ N(

√
m X n, σ) if m → ∞

√
m Xn =

√
m/n

√
n Xn −→ N(0,

√
λσ) where λ = limm/n

We get the correct result in case of m/n → 0 (otherwise there is
additional randomness in the limit)
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The choice of m

The bootstrap distribution does not change much near the
optimum
If m is too large or too small, then the bootstrap distributions are
different
Thus the algorithm:

1 Let mj =
[
q jn

]
(0 < q < 1)

2 Let us determine the distribution of T ∗
mj ,n for all mj by simulation

3 Choose the m for which m̂ = argminρ(T ∗
mj ,n,T

∗
mj+1,n) (where ρ is a

metrics, consistent with the convergence in distribution - e.g.
Kolmogorov-Smirnov metrics)
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Applications for the dependent case

Circular block bootstrap (CBB)
1 Yt = Xt mod (n) (we continue the time series from the beginning, n is

the length of the series)
2 Let i1, i2, . . . im be a sample with replacement from the uniform

distribution over {1, . . . ,n}
3 For a given block size b let us create n′ = mb (n′ ≈ n)

pseudo-observations:
Y ∗
(k−1)b+j = Yik+j−1, where j = 1, . . . ,b; k = 1, . . . ,m

4 Computation of the statistics of interest from the
pseudo-observations:

Y
∗
n′ = (n′)−1(Y ∗

1 + . . .+ Y ∗
n′)
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Selecting the block-size (Politis & White)

F0
−∞ = {Xn : n ≤ 0}, F∞

k = {Xn : n ≥ k}

Definition
{Xt : t∈ Z } is strongly mixing, if αX (k) −→ 0 (k → ∞), where
αX (k) = sup{|P(A ∩ B)− P(A)P(B)| : A ∈ F0

−∞,B ∈ F∞
k }

Theorem

Let us suppose that E |Xt |6+δ < ∞,
∞∑

k=1
k2(αX (k))

δ
6+δ < ∞

for a suitable δ>0.
Let b = o(N1/2), so if N → ∞ then b → ∞.
This implies MSE(σ2

b,X
) = G2

b2 + D b
n + o(b−2) + o(b

n )

where D = 4
3g2(0) and G =

∞∑
k=−∞

|k |R(k)

g(·) is the spectral density function
R(·) is the autocovariance function
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Selecting the block-size/2

The optimal block-size: bopt = [(2G2

D )n1/3]

Question: how to estimate G and D
D̂ = 4

3 ĝ2(0)

Ĝ =
M∑

k=−M
λ( k

M )|k |R̂(k), where

R̂(k) = N−1
N−|k |∑
k=1

(Xi − X N)(Xi+|k | − X N)

λ(t) =


1 if |t | ∈ [0,1/2]
2(1 − |t |) if |t | ∈ [1/2,1]
0 otherwise

M = 2m̂, where m̂ is the index, from where the correlogram
"essentially" equals 0
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Parametric bootstrap

Till now, we have not used any models
If we have a reliable model, it is worth using also in the bootstrap
In the simplest case the samples are simulated from the fitted
parametric model and the statistics is calculated for these
When the sample size is small, it is often better than the
nonparametric
It is often used e.g. for linear models, when the residuals are
simulated and these are added to the fitted values
Selection may be based on the aim of the investigation

Model selection: nonparametric bootstrap
Model reliability: parametric bootstrap
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A simple example for parametric bootstrap

Question: can the shape parameter of the fitted gamma
distribution be equal to 1?
Bootstrap samples are taken from the exponential distribution (this
is the Γ(1, λ) distribution).
Statistics: the ML estimator of the shape parameter for these
samples
Bootstrap p-value: the proportion of cases with estimators that
were further away from 1 than the estimator for the observed case
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AR-sieve bootstrap

Condition: the process is stationary and estimable with an AR(p)

model: Xt − µX =
p∑

j=1
ϕj(Xt−j − µX ) + εt , t ∈ Z, where

µX = EXt , (εt)t∈Z i.i.d., E(εt)=0 and εt is independent from
{Xs; s < t}
Estimation of parameters and errors:

p̂=? −→ AIC
µ̂X = n−1 ∑n

t=1 Xt

ϕ̂1, . . . , ϕ̂p̂=? −→ Yule-Walker method
Rt = Xt −

∑p̂
j=1 ϕ̂jXt−j , where t = p̂ + 1, . . . ,n from this we

have ε̂t = Rt − Rt , where t = p̂ + 1, . . . ,n
The steps of constructing the bootstrap sample:

ε∗t : a random element from the set { ε̂p̂+1, . . . , ε̂n }
Let (X ∗

−u, . . . ,X ∗
−u+p̂−1) = (µ̂X , . . . , µ̂X ) (initial values, u is large)

X ∗
t = µ̂X +

p∑
j=1

ϕ̂j(X ∗
t−j − µ̂X ) + ε∗t t ∈ Z

The bootstrap sample: { X ∗
1 , . . . ,X

∗
n }
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Weighted (wild) bootstrap

Here we do not take a sample, but weigh the original sample
(practically the likelihood function is weighted)

Formally: Z (k)
i are the weights, E(Z (k)

i ) = 0 and Var(Z (k)
i ) = 1

where i = 1, . . . ,n, k = 1, . . . ,N (N is the number of boostrap
repetitions)
In the classical case Z has multinomial distribution
The first application was for the regression: ŷ∗

i = ŷi + Ziεi

It is worth to use in the heteroscedastic cases
Further applications: goodness-of-fit for copulas (we come back to
this approach later)
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Bootstrap and the extreme value models

Nonparametric
bootstrap methods
often underestimate the
uncertainty
Parametric bootstrap is
used the most
Here a more cautious
approach is also
shown: the median of
the profile likelihood
intervals for the
bootstrap samples

Figure: Different confidence intervals for the
return level
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The method of Hall and Weissman

m << n is needed in extreme-value models and at the same time
we have to simplify the problem to the estimation of not so
extreme quantiles
Fine tuning is possible by parameters (s, t)

The aim: D1(t ,n, x) := E
{
(Fθ̂(t)(x)− F (x))2

}
→ mint

If the 1 − p-quantile is to be estimated, then it can be rewritten:
D2(t ,n, x) := D1(t ,n,F

−1
(p)) = E

{
(F θ̂(t)(F

−1
(p))− p)2

}
→ mint

The bootstrap estimators D̂1(t ,m, y) = E ′
{(

Fθ̂∗(t)(y)− F̂ (y)
)2

}
and D̂2(t ,m,q) = E ′

{(
Fθ̂∗(t)

(
F̂

−1
(q)

)
− q

)2
}

.

One has to pay attention that the ratio log(x)/ log(n) should
asymptotically not change when we use the transform from (n, x)
to the pair (m, y).
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