Price fluctuations: Lecture 6

Zempléni, András

Department of Probability Theory Faculty of Sciences ELTE

- Resampling method, for investigating the variances of our estimators, to check the fit of the models
- There are many different versions worked out since then, it is one of the most quickly developing area of the statistics
- Its advantage: it is flexible with respect of conditions on the distribution of the sample/statistics

- **X**^{*}_i = {*X*^{*}₁,..., *X*^{*}_m} sampling with replacement from the original sample
- P_{*} is its distribution
- in general m = n
- Difficulties in practice:
 - $\underline{x} \Longrightarrow \hat{P}$ depends on the chosen model
 - 2 $\hat{P} \longrightarrow \underline{x}^*$ the many repetitions are computer-intensive

- 4 個 ト 4 ヨ ト 4 ヨ ト -

- Let X₁, X₂,... be i.i.d. random variables with (unknown) distribution function, F
- $T_n = t_n(X_n; F)$ the random variable (statistics) of interest, its distribution: G_n
- Our aim: to estimate the distribution of G_n
- Bootstrap method:
 - For given \mathcal{X} , we take an *m*-element sample with replacement $\mathcal{X}_m^* = \{X_1^*, \dots, X_m^*\}$
 - The distribution of X_i^* : $F_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$

•
$$T_{m,n}^* = t_m(\mathcal{X}_m^*; F_n)$$

• Repetitions $\Rightarrow \hat{G}_{m,n}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Fundamental theorem (Efron)

 In the case above, if σ² = Var(X_i) is finite, and the statistics is the standardized sample mean

$$T_n = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma}$$

then

$$\lim_{n\to\infty}\sup_{x}|P_*(T^*_{n,n}\leq x)-\Phi(x)|=0$$

a.s.

- The proof is based on the Berry-Esséen theorem (it gives the speed of the convergence at the central limit theorem), the convergence in $\sup_{x} |\hat{G}_{n,n}(x) G_n(x)|$ can be even quicker than that of the classical normal approximation.
- The approach can be generalized to many cases (smoothness is required)

.

A counter-example

In some cases the estimator is not consistent (Singh, 1981):

Definition

 $\{X_n\}n \ge 1$ is m-dependent for an $m \ge 0$, if $\{X_1, \ldots, X_k\}$ and $\{X_{k+m+1}, \ldots\}$ are independent for every $k \ge 0$.

• Notation: $\sigma_m^2 = Var(X_1) + 2\sum_{i=1}^{m-1} Cov(X_1, X_{1+i})$

• Let the statistics to be estimated: $T_n = \sqrt{n}(\overline{X}_n - \mu)$

• Its bootstrap counterpart: $T_{n,n}^* = \sqrt{n}(\overline{X}_n^* - \overline{X}_n)$

Theorem

Let $\{X_n\} n \ge 1$ be a stationary *m*-dependent sequence of *r.v.s*, $EX_1 = \mu$, $\sigma^2 = Var(X_1) \in (0, \infty)$, $\sum_{i=1}^{m-1} Cov(X_1, X_{1+i}) \neq 0$ and $\sigma_m^2 \neq 0$. Then

$$\lim_{n\to\infty}\sup_{x}|P_*(T^*_{n,n}\leq x)-P(T_n\leq x)|\neq 0$$

Correction in case of confidence intervals

 A refinement is appropriate to the naive, empirical quantiles. The BCA (bias-corrected and accelerated)-method for determining the limits:

$$\hat{F}^{-1}\left\{\Phi\left(z_0+\frac{z^{\alpha}+z_0}{1-a(z^{\alpha}+z_0)}\right)\right\}$$

- where \$\hat{F}^{-1}\$ is the empirical distribution function of the bootstrap statistics
- z^{α} is the standard normal α -quantile
- *z*₀ is a term for correcting the bias
- a corrects the acceleration of the increase of the variance
- If a = 0 and $z_0 = 0$, the value is exactly $F^{-1}(\alpha)$, the empirical α -quantile.

< 回 > < 三 > < 三 >

 If applying a monotonic transformation m(ϑ) to our estimator, the result is normally distributed:

$$m(\hat{\vartheta}) \sim N(m(\vartheta) - z_0(1 + am(\vartheta)), 1 + am(\vartheta)).$$

- Then, because of the monotonicity P(θ̂ < θ) = Φ(z₀), z₀ can be easily estimated
- The estimation of a can be got from the skewness of the derivative of the loglikelihood function

< 回 ト < 三 ト < 三

Examples

- Confidence interval for the correlation:
 - the standard interval (it is based on the normality of the empirical correlation coefficient) is symmetric – not always realistic for small samples
 - Boostrap quantiles may be biased
 - The BCA method can give an asymmetric interval, its coverage probability is usually more exact
- Similar problems arise in extreme-value applications (VaR estimation)
- It is a question, whether the parametric or the nonparametric bootstrap is worth using (the parametric is based on an assumed model, like normality of the sample and it gives usually a more cautious - wider - interval)
- Bootstrap may fail in high quantile estimation (e.g. for the upper end-point estimation), because the limit is a random variable instead of ϑ

イロト イ団ト イヨト イヨト

- If the usual bootstrap does not work, quite often it helps if we take samples of size m < n
- In this case even sampling without replacement is possible, which may have better properties
- Bickel and Sakov (2008) give an algorithm for finding the optimal m valid for the original sampling scheme (with replacement). The result is $m \sim n$, if a sample of n is good as well.

- Let X_i be an i.i.d. sequence with expectation μ and standard deviation σ
- We test the hypothesis $\mu = 0$ using the statistics $\sqrt{nX_n}$
- It is a good bootstrap algorithm to take samples from the "residuals" X_i - X̄_n
- If we consider the bootstrap distribution of $\sqrt{n} \overline{X}_n^*$ then its quantiles are not consistent (as we shall see on the next slide)
- For a fixed *m*, when $n \to \infty$ the limit distribution of $\sqrt{m} \overline{X}_m^*$ depends on *m* (it is constant for all *m* just for the normal distribution)

・ 何 ト ・ ヨ ト ・ ヨ

- $\sqrt{m}(\overline{X}_m^* \overline{X}_n) \longrightarrow N(0, \sigma)$ if $n, m \to \infty$
- So $\sqrt{m} \ \overline{X}_m^* \sim N(\sqrt{m} \ \overline{X}_n, \sigma)$ if $m \to \infty$
- $\sqrt{m} \overline{X_n} = \sqrt{m/n} \sqrt{n} \overline{X_n} \longrightarrow N(0, \sqrt{\lambda}\sigma)$ where $\lambda = \lim m/n$
- We get the correct result in case of *m*/*n* → 0 (otherwise there is additional randomness in the limit)

- The bootstrap distribution does not change much near the optimum
- If m is too large or too small, then the bootstrap distributions are different
- Thus the algorithm:
 - Let $m_j = [q^j n] (0 < q < 1)$
 - 2 Let us determine the distribution of $T^*_{m_i,n}$ for all m_j by simulation
 - Solution Choose the *m* for which $\hat{m} = \operatorname{argmin}_{\rho}(T^*_{m_{j,n}}, T^*_{m_{j+1},n})$ (where ρ is a metrics, consistent with the convergence in distribution e.g. Kolmogorov-Smirnov metrics)

Circular block bootstrap (CBB)

- $Y_t = X_t_{\text{mod }(n)}$ (we continue the time series from the beginning, *n* is the length of the series)
- 2 Let $i_1, i_2, ..., i_m$ be a sample with replacement from the uniform distribution over $\{1, ..., n\}$
- Solution For a given block size *b* let us create n' = mb ($n' \approx n$) pseudo-observations:

 $Y^*_{(k-1)b+j} = Y_{i_k+j-1}$, where j = 1, ..., b; k = 1, ..., m

Computation of the statistics of interest from the pseudo-observations:

$$\overline{Y}_{n'}^* = (n')^{-1}(Y_1^* + \ldots + Y_{n'}^*)$$

Selecting the block-size (Politis & White)

$$\mathcal{F}_{-\infty}^{0} = \{X_n : n \leq 0\}, \ \mathcal{F}_k^{\infty} = \{X_n : n \geq k\}$$

Definition

{*X_t*: *t*∈
$$\mathbb{Z}$$
 } is strongly mixing, if $\alpha_X(k) \longrightarrow 0$ ($k \to \infty$), where $\alpha_X(k) = \sup\{|P(A \cap B) - P(A)P(B)| : A \in \mathcal{F}_{-\infty}^0, B \in \mathcal{F}_k^\infty\}$

Theorem

Let us suppose that
$$E|X_t|^{6+\delta} < \infty$$
, $\sum_{k=1}^{\infty} k^2 (\alpha_X(k))^{\frac{\delta}{6+\delta}} < \infty$

for a suitable $\delta > 0$. Let $b = o(N^{1/2})$, so if $N \to \infty$ then $b \to \infty$. This implies $MSE(\sigma_{b,\overline{X}}^2) = \frac{G^2}{b^2} + D\frac{b}{n} + o(b^{-2}) + o(\frac{b}{n})$ where $D = \frac{4}{3}g^2(0)$ and $G = \sum_{k=-\infty}^{\infty} |k|R(k)$ $g(\cdot)$ is the spectral density function $R(\cdot)$ is the autocovariance function

Selecting the block-size/2

- The optimal block-size: $b_{opt} = [(\frac{2G^2}{D})n^{1/3}]$
- Question: how to estimate G and D

•
$$\hat{D} = \frac{4}{3}\hat{g}^2(0)$$

• $\hat{G} = \sum_{k=-M}^{M} \lambda(\frac{k}{M}) |k| \hat{R}(k)$, where
 $\hat{R}(k) = N^{-1} \sum_{k=1}^{N-|k|} (X_i - \overline{X}_N) (X_{i+|k|} - \overline{X}_N)$
 $\lambda(t) = \begin{cases} 1 & \text{if } |t| \in [0, 1/2] \\ 2(1 - |t|) & \text{if } |t| \in [1/2, 1] \\ 0 & \text{otherwise} \end{cases}$

 $M = 2\hat{m}$, where \hat{m} is the index, from where the correlogram "essentially" equals 0

- Till now, we have not used any models
- If we have a reliable model, it is worth using also in the bootstrap
- In the simplest case the samples are simulated from the fitted parametric model and the statistics is calculated for these
- When the sample size is small, it is often better than the nonparametric
- It is often used e.g. for linear models, when the residuals are simulated and these are added to the fitted values
- Selection may be based on the aim of the investigation
 - Model selection: nonparametric bootstrap
 - Model reliability: parametric bootstrap

★ ∃ →

- Question: can the shape parameter of the fitted gamma distribution be equal to 1?
- Bootstrap samples are taken from the exponential distribution (this is the Γ(1, λ) distribution).
- Statistics: the ML estimator of the shape parameter for these samples
- Bootstrap *p*-value: the proportion of cases with estimators that were further away from 1 than the estimator for the observed case

.

AR-sieve bootstrap

 Condition: the process is stationary and estimable with an AR(p) model: $X_t - \mu_X = \sum_{i=1}^{p} \phi_i (X_{t-i} - \mu_X) + \varepsilon_t, \quad t \in \mathbb{Z}$, where $\mu_X = EX_t, (\varepsilon_t)_{t \in \mathbb{Z}}$ i.i.d., $E(\varepsilon_t)=0$ and ε_t is independent from $\{X_{s}; s < t\}$ Estimation of parameters and errors: • $\hat{p}=? \longrightarrow AIC$ • $\hat{\mu}_{X} = n^{-1} \sum_{t=1}^{n} X_{t}$ • $\hat{\phi}_1, \ldots, \hat{\phi}_{\hat{p}} = ? \longrightarrow$ Yule-Walker method • $R_t = X_t - \sum_{i=1}^{\hat{p}} \hat{\phi}_i X_{t-i}$, where $t = \hat{p} + 1, ..., n$ from this we have $\hat{\varepsilon}_t = R_t - \overline{R}_t$, where $t = \hat{p} + 1, \dots, n$ The steps of constructing the bootstrap sample: • ε_t^* : a random element from the set { $\hat{\varepsilon}_{\hat{p}+1}, \ldots, \hat{\varepsilon}_n$ } • Let $(X_{-u}^*, \ldots, X_{-u+\hat{p}-1}^*) = (\hat{\mu}_X, \ldots, \hat{\mu}_X)$ (initial values, *u* is large) • $X_t^* = \hat{\mu}_X + \sum_{i=1}^p \hat{\phi}_i (X_{t-j}^* - \hat{\mu}_X) + \varepsilon_t^*$ $t \in \mathbb{Z}$ • The bootstrap sample: { X_1^*, \ldots, X_n^* } ・ ロ ト ・ 同 ト ・ ヨ ト ・ 日 ト

- Here we do not take a sample, but weigh the original sample (practically the likelihood function is weighted)
- Formally: $Z_i^{(k)}$ are the weights, $E(Z_i^{(k)}) = 0$ and $Var(Z_i^{(k)}) = 1$ where i = 1, ..., n, k = 1, ..., N (*N* is the number of boostrap repetitions)
- In the classical case <u>Z</u> has multinomial distribution
- The first application was for the regression: $\hat{y}_i^* = \hat{y}_i + Z_i \varepsilon_i$
- It is worth to use in the heteroscedastic cases
- Further applications: goodness-of-fit for copulas (we come back to this approach later)

A (10) A (10)

Bootstrap and the extreme value models

- Nonparametric bootstrap methods often underestimate the uncertainty
- Parametric bootstrap is used the most
- Here a more cautious approach is also shown: the median of the profile likelihood intervals for the bootstrap samples

Figure: Different confidence intervals for the return level

The method of Hall and Weissman

- m << n is needed in extreme-value models and at the same time we have to simplify the problem to the estimation of not so extreme quantiles
- Fine tuning is possible by parameters (*s*, *t*)
- The aim: $D_1(t, n, x) := E\left\{(F_{\hat{ heta}(t)}(x) F(x))^2\right\}
 ightarrow \min_t$
- If the 1 p-quantile is to be estimated, then it can be rewritten: $D_2(t, n, x) := D_1(t, n, \overline{F}^{-1}(p)) = E\left\{(\overline{F}_{\hat{\theta}(t)}(\overline{F}^{-1}(p)) - p)^2\right\} \to \min_t$
- The bootstrap estimators $\hat{D}_1(t, m, y) = E' \left\{ \left(F_{\hat{\theta}^*(t)}(y) \hat{F}(y) \right)^2 \right\}$ and $\hat{D}_2(t, m, q) = E' \left\{ \left(F_{\hat{\theta}^*(t)}\left(\hat{\overline{F}}^{-1}(q)\right) - q \right)^2 \right\}.$
- One has to pay attention that the ratio log(x)/log(n) should asymptotically not change when we use the transform from (n, x) to the pair (m, y).

- Efron, B. and Tibshirani, R.J.: An Introduction to the Bootstrap (1993)
- Kysely, J. : A cautionary note... (2008)
- Bickel, P.J., Götze, F. and van Zwet, W.R.: Resampling fewer than n observations (1997)
- Lahiri, S.N.: Resampling methods for dependent data (Springer, 2003)
- Bickel, P.J. and Sakov, A.: On the Choice of *m* in the *m* Out of *n* Bootstrap and its Application to Confidence Bounds for Extrema (2008)
- Politis, D. N. and White, H.: Automatic Block-Length Selection for the Dependent Bootstrap (2004)

< ロ > < 同 > < 回 > < 回 >