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Return levels in the POT models

@ The 1 — p-quantile, based on the generalized Pareto model:
= —£
g P
u+? [(n) —1}, £#0
u—&log(%), £E=0

where n = P(X > u), j = 2. ny is the number of such observations in
the sample that exceed u

Zp:

@ This is the value that is exceeded on average once in every 1/p
observations

@ If we observe annually on average n, maxima over the threshold,

'1 . . . .
then the Ty quantile is returning once in every T years on
average.

@ If ¢ < 0, the estimated upper endpoint of the distribution is u— 5 /¢.
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Threshold selection

@ The mean excess plot: We plot the average of X — u for different
thresholds u (for those observations, which fulfill X > u) as a
function of u.

@ If the Pareto model is true, this curve is near to linear. The
explanation of its properties may be difficult due to its wild
fluctuations near the maximum of the observations.

@ An alternative: let us consider the estimated values of the
parameters for different thresholds.
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Example: S&P 500, daily losses

Mean Excess Funciion @ Daily losses in %
g1 : @ 1960-1987
. | _ , - @ Threshold: 1.5%
* Nt _ o MLE: ¢ = 0.177,0 = 0.415
g @ 40 years return level: 6.57,

Mean Excess: e

conf. int: (4.9;10)

Data for the period
2002-2005

Threshold: 1%
0(;00 0(;05 0(;10 0(;15 0(;20 O(;25 ° MLE: é‘ = _0‘31 5 O- p— 0.62
@ 10 years return level: 2.8

Figure 1: Mean excesses as the @ The largest observed loss
function of the threshold was on 13.10.2008: 9.05%
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Multivariate POT models

@ |t would be good to use more data and real observations

@ Classic model: the observations should exceed the threshold in all
coordinates

e Margins: GPD
o Certain parametric MGEV models may be transferred
e R package EVD can be used

@ But: the used number of observations is low
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Alternative definition (BGPD II)

@ It considers every observation that exceeds the threshold in at
least one coordinate

@ Formally: Y = (V1,..., Yq) is arandom vector, u = (uy, ..., Ug) @
suitably high threshold X = Y —u = (Yy — uy, ..., Y4 — Uy) the

exceedances
@ His a d-dimensional GPD (MGPD) if:
—1 G(X1,...,Xd)
H(xqy,....Xg) = I
(Xt Xa) og G(0,....0) EG(x AD,....xgAO)’

where G has MGEV distribution
@ We get standard Fréchet marginals by the transform
—1

A vy (Xi — \1/6i
log Gig; ;.0 (Xi) (1 +&i(x; = pi)/ai) ™,

L= t,'(X,') =

where 1+ &(x; — pj)/oj >0and o; > 0,i=1,...,d.
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Alternative definition (BGPD II)

@ The MGPD density (if exists)

oH o log G(x)
X)) = o o™~ ax - oxg (1- log G(Q))
d iy,
_ 1%, t(x) y 8Vatd (t1 (x1), ..., td(Xd)).

V(1(0)....,15(0)) Ot

@ The margins will not be GPDs, but Z;|Z; > 0 is GPD for the
1-dimensional margins

@ There are just a few models which can be identified

@ Estimation: with the R package mgpd, but it is not easy in more
than two dimensions

@ Comparison: bootstrap simulations show that those estimators,
which are based on more data are indeed more reliable
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Comparison of the models

BGPD-I BGPD-II
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Figure 2: Coverage sets for simulated data
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Comparing two 2D models

Logistic Psi-logistic
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Figure 3: Comparing symmetric and asymmetric models

Psi-logistic model: A(W(t)) = A(t+ f(t)), where
fo (1) = w1 (t(1 = £))¥2, if t €[0,1], ¢y € Rand ¢p > 1 are
asymmetry parameters
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A new representation

@ Here we assume exponential margins

@ Let Y; = Z — max(Xi,..., Xyq) + Xi, where Z has unit exponential
distribution, and X is independent from Z.Then Y has an MGPD Il
distribution, with unit exponential margins conditionally for Y; > 0.

@ Moreover, every such MGPD vector can be expressed in this way

@ For certain generators with independent components,the density
can be calculated

@ ML method can be used for estimation
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Estimation methods, based on upper order statistics

Assumption: the observations come from F, which is in the MDA of a
GEYV distribution G.

@ Hill estimator

@ Pickands estimator

@ Method of moments

@ ML estimator for the exponential regression
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Hill estimator

@ For a heavy tailed distribution: P(X > z) = z7*L(2).
@ The distribution of log(X): P(log X > u) = e~ *“L(e").
@ Quantile function: Q(1 — p) = p~7L*(1/p), thus

log Q(1 — p) = —vlogp + log L*(1/p).
@ The ordered sample of Xi, Xo, ..., X, is denoted by
X< X5 <--- <X
@ The elements of the ordered sample are consistent estimators for
the respective quantiles.
@ Plot: IogX,*;_H_1 vs log njﬁ
@ It is asymptotically linear with steepness ~.
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Hill estimator/2

@ Estimation of the steepnes:
501 (108(X5_j41) — 08(X3 k1))
~ 1 0 (log(h) — log(749)

@ The denominator is near to 1, if k is large
@ Thus the Hill estimator:

K
1 * *
Hin = 4 > (|Og(anj+1) — log(Xn k11 )) :
=

@ See Embrechts et al., p. 331 for another motivation
@ Properties:

e depends on k

e k small: large variance

@ k large: substantial bias

@ A compromise must be found. Not too robust!
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Methods for choosing k

e {is a consistent estimator for the tail index only if
k — ooand k/n— 0 as n — oc.

@ The double bootstrap method proposes k by minimizing the
asymptotic mean squared error, based on bootstrap resampling.

@ Another method minimizes the distance between the tail of the
empirical distribution function and the fitted Pareto distribution with
the estimated tail index parameter. For the minimization the
Kolmogorov-Smirnov distance of the quantiles can be used.

Zempléni, Andrés (ELTE) Price fluctuations (extreme value models) 14/23



Example: GBP vs DM daily return

0.018400 0.005340 0.002870 0.001610 0.000621
I I I I I I I I I I

alpha

15 227 438 649 861 1072 1283 1495 1706 1917

Order Statistics

Figure 4: The Hill estimator and its confidence bounds as a function of the
threshold
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Point processes

@ A useful tool, it is easy to generalise the models with its help
@ The sample is a sequence of random points, their number is n
@ N(B): the number of observations falling into the Borel set B.

@ The extremes are interesting for us: we usually deal with points
falling into (u, o)
@ Poisson point process: generalisation of the one dimensional
Poisson process. Its properties:
e N(A) and N(B) are independent for any disjoint sets A and B
e If A > 0 is a given measure over the Borel sets (intensity), N(B) has
Poisson distribution with parameter A(B)
e The process is called homogeneous if A is constant times the
Lebesgue measure (taken over the bounded Borel sets B)
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Statistical inference for point processes

@ The intensity X is supposed to come from a parametric family

n
L(9; X1, .-, Xn) = exp{—A(A; 0)} [ Mxi: 9)
i=1
gives the likelihood if we have observations from a region A.

@ Relation to the GPD model: the intensity measure for
exceedances beyond uj, is

NA) = (2 — t1) [1 +§ﬂ1/£

for a region (t; &) x (z,00) where z > u,

@ This approach allows for more complex models, e.g. time
dependence of the parameters.
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Max-stable processes

@ Let T c RY be an index set (in case of the basic definition these
were precipitation measuring stations), then {Y;:t€ T} is a
max-stable process if and only if its coordinates are max-stable.

@ Example: let (r;, s;) be a Poisson point process over the set
(0, 00) x S with intensity measure
ar

where S is an arbitrary measurable set, and H a measure over S.
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The construction of Smith (1990)

@ Let (r;, s;) be a Poisson point process over the set (0, c0) x S with

intensity measure

ar

@ Let f be such that [4f(s, t)dH(s) = 1 for all t and

Y := max{rif(sj,t)},te T
I

@ r;is the strength of the jth storm and s; is its location.

P(Y:i <y, VteT) :exp{—/smtax{f(;’tt)}dH(s)}.

@ This implies:
o the margin of Y is unit Frechet
e Y is max-stable
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@ |T| = 1: one dimensional max-stable distribution
e T={1,2}, S=10,1], His the Lebesgue measure, for 0 < o < 1
1—a)s@ if t =1
f(s,t) = (1-e)s, '
(1—a)(1 -8 ift=2
is just the 2 dimensional logistic model

@ Gaussian extreme-value process: f(s, t) is the density function of
the normal distribution with mean s and covariance-matrix X as a
function of s — ¢
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Example: simulated Smith-type extremal processes
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Model-fitting

@ The estimation of the 1 dimensional margins

@ Estimation of the 2 dimensional dependence (extremal index)
2y — 22), where

P(Y(z1) <y, Y(2) <y) = P(Y(z1) < y)"1~%).

@ For parametric — e.g. Gauss - models approximate (pairwise)
maximum likelihood estimation can be calculated; we come back
to this question later
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