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Return levels in the POT models

The 1 − p-quantile, based on the generalized Pareto model:

zp =

u + σ̃
ξ

[(
p
η

)−ξ
− 1

]
, ξ ̸= 0

u − σ̃ log
(

p
η

)
, ξ = 0

where η = P(X > u), η̂ = nu
n . nu is the number of such observations in

the sample that exceed u
This is the value that is exceeded on average once in every 1/p
observations
If we observe annually on average ny maxima over the threshold,
then the 1

T∗ny
quantile is returning once in every T years on

average.
If ξ < 0, the estimated upper endpoint of the distribution is u − σ̃/ξ.
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Threshold selection

The mean excess plot: We plot the average of X − u for different
thresholds u (for those observations, which fulfill X > u) as a
function of u.
If the Pareto model is true, this curve is near to linear. The
explanation of its properties may be difficult due to its wild
fluctuations near the maximum of the observations.
An alternative: let us consider the estimated values of the
parameters for different thresholds.
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Example: S&P 500, daily losses
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Figure 1: Mean excesses as the
function of the threshold

Daily losses in %
1960–1987
Threshold: 1.5%
MLE: ξ = 0.177, σ = 0.415
40 years return level: 6.57,
conf. int: (4.9;10)
Data for the period
2002-2005
Threshold: 1%
MLE: ξ = −0.31, σ = 0.62
10 years return level: 2.8
The largest observed loss
was on 13.10.2008: 9.05%
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Multivariate POT models

It would be good to use more data and real observations
Classic model: the observations should exceed the threshold in all
coordinates

Margins: GPD
Certain parametric MGEV models may be transferred
R package EVD can be used

But: the used number of observations is low
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Alternative definition (BGPD II)

It considers every observation that exceeds the threshold in at
least one coordinate
Formally: Y = (Y1, ...,Yd) is a random vector, u = (u1, ...,ud) a
suitably high threshold X = Y − u = (Y1 − u1, ...,Yd − ud) the
exceedances
H is a d-dimensional GPD (MGPD) if:

H(x1, . . . , xd) =
−1

logG
(
0, . . . ,0

) log G
(
x1, . . . , xd

)
G
(
x1 ∧ 0, . . . , xd ∧ 0

) ,
where G has MGEV distribution
We get standard Fréchet marginals by the transform

ti = ti(xi) =
−1

logGξi ,µi ,σi (xi)
= (1 + ξi(xi − µi)/σi)

1/ξi ,

where 1 + ξi(xi − µi)/σi > 0 and σi > 0, i = 1, ...,d .
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Alternative definition (BGPD II)

The MGPD density (if exists)

h(x) =
∂H

∂x1 . . . ∂xd
(x) =

∂

∂x1 · · · ∂xd

(
1 − logG(x)

logG(0)

)
=

∏d
i=1 t ′i (xi)

V
(

t1(0), . . . , td(0)
) × ∂V

∂t1 · · · ∂td

(
t1(x1), . . . , td(xd)

)
.

The margins will not be GPDs, but Zi |Zi > 0 is GPD for the
1-dimensional margins
There are just a few models which can be identified
Estimation: with the R package mgpd, but it is not easy in more
than two dimensions
Comparison: bootstrap simulations show that those estimators,
which are based on more data are indeed more reliable
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Comparison of the models

BGPD−I
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Figure 2: Coverage sets for simulated data
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Comparing two 2D models
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Figure 3: Comparing symmetric and asymmetric models

Psi-logistic model: A(Ψ(t)) = A(t + f (t)), where
fψ1,ψ2(t) = ψ1(t(1 − t))ψ2 , if t ∈ [0,1], ψ1 ∈ R and ψ2 ≥ 1 are
asymmetry parameters

Zempléni, András (ELTE) Price fluctuations (extreme value models) 9 / 23



A new representation

Here we assume exponential margins
Let Yi = Z −max(X1, ...,Xd) + Xi , where Z has unit exponential
distribution, and X is independent from Z .Then Y has an MGPD II
distribution, with unit exponential margins conditionally for Yi > 0.
Moreover, every such MGPD vector can be expressed in this way
For certain generators with independent components,the density
can be calculated
ML method can be used for estimation
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Estimation methods, based on upper order statistics

Assumption: the observations come from F , which is in the MDA of a
GEV distribution G.

Hill estimator
Pickands estimator
Method of moments
ML estimator for the exponential regression
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Hill estimator

For a heavy tailed distribution: P(X > z) = z−αL(z).
The distribution of log(X ): P(logX > u) = e−αuL(eu).
Quantile function: Q(1 − p) = p−γL∗(1/p), thus

logQ(1 − p) = −γ log p + log L∗(1/p).

The ordered sample of X1,X2, . . . ,Xn is denoted by
X ∗

1 ≤ X ∗
2 ≤ · · · ≤ X ∗

n .
The elements of the ordered sample are consistent estimators for
the respective quantiles.
Plot: logX ∗

n−j+1 vs log j
n+1 .

It is asymptotically linear with steepness γ.
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Hill estimator/2

Estimation of the steepnes:

1
k
∑k

j=1

(
log(X ∗

n−j+1)− log(X ∗
n−k+1)

)
− 1

k
∑k

j=1

(
log( j

n+1)− log( k
n+1)

)
The denominator is near to 1, if k is large
Thus the Hill estimator:

Hk ,n =
1
k

k∑
j=1

(
log(X ∗

n−j+1)− log(X ∗
n−k+1)

)
.

See Embrechts et al., p. 331 for another motivation
Properties:

depends on k
k small: large variance
k large: substantial bias
A compromise must be found. Not too robust!
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Methods for choosing k

ξ̂ is a consistent estimator for the tail index only if
k → ∞ and k/n → 0 as n → ∞.
The double bootstrap method proposes k by minimizing the
asymptotic mean squared error, based on bootstrap resampling.
Another method minimizes the distance between the tail of the
empirical distribution function and the fitted Pareto distribution with
the estimated tail index parameter. For the minimization the
Kolmogorov-Smirnov distance of the quantiles can be used.
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Example: GBP vs DM daily return
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Figure 4: The Hill estimator and its confidence bounds as a function of the
threshold

Zempléni, András (ELTE) Price fluctuations (extreme value models) 15 / 23



Point processes

A useful tool, it is easy to generalise the models with its help
The sample is a sequence of random points, their number is n
N(B): the number of observations falling into the Borel set B.
The extremes are interesting for us: we usually deal with points
falling into (u,∞)

Poisson point process: generalisation of the one dimensional
Poisson process. Its properties:

N(A) and N(B) are independent for any disjoint sets A and B
If Λ ≥ 0 is a given measure over the Borel sets (intensity), N(B) has
Poisson distribution with parameter Λ(B)
The process is called homogeneous if Λ is constant times the
Lebesgue measure (taken over the bounded Borel sets B)
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Statistical inference for point processes

The intensity λ is supposed to come from a parametric family

L(ϑ; x1, . . . , xn) = exp{−Λ(A;ϑ)}
n∏

i=1

λ(xi ;ϑ)

gives the likelihood if we have observations from a region A.
Relation to the GPD model: the intensity measure for
exceedances beyond un is

Λ(A) = (t2 − t1)
[
1 + ξ

z
σ

]−1/ξ

for a region (t1; t2)× (z,∞) where z > un

This approach allows for more complex models, e.g. time
dependence of the parameters.
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Max-stable processes

Let T ⊂ Rd be an index set (in case of the basic definition these
were precipitation measuring stations), then {Yt : t ∈ T} is a
max-stable process if and only if its coordinates are max-stable.
Example: let (ri , si) be a Poisson point process over the set
(0,∞)× S with intensity measure

dr
r2 dH(ω)

where S is an arbitrary measurable set, and H a measure over S.
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The construction of Smith (1990)

Let (ri , si) be a Poisson point process over the set (0,∞)× S with
intensity measure

dr
r2 dH(ω)

Let f be such that
∫

S f (s, t)dH(s) = 1 for all t and

Yt := max
i
{ri f (si , t)}, t ∈ T

ri is the strength of the i th storm and si is its location.

P(Yt < yt , ∀t ∈ T ) = exp

{
−
∫

S
max

t

{
f (s, t)

yt

}
dH(s)

}
.

This implies:
the margin of Y is unit Frechet
Y is max-stable
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Examples

|T | = 1: one dimensional max-stable distribution
T = {1,2}, S = [0,1], H is the Lebesgue measure, for 0 < α < 1

f (s, t) =

{
(1 − α)s−α, if t = 1
(1 − α)(1 − s)−α, if t = 2

is just the 2 dimensional logistic model
Gaussian extreme-value process: f (s, t) is the density function of
the normal distribution with mean s and covariance-matrix Σ as a
function of s − t
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Example: simulated Smith-type extremal processes
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Model-fitting

The estimation of the 1 dimensional margins
Estimation of the 2 dimensional dependence (extremal index)
ϑ(z1 − z2), where

P(Y (z1) < y ,Y (z2) < y) = P(Y (z1) < y)ϑ(z1−z2).

For parametric – e.g. Gauss - models approximate (pairwise)
maximum likelihood estimation can be calculated; we come back
to this question later

Zempléni, András (ELTE) Price fluctuations (extreme value models) 22 / 23



References

Danielsson, J., de Haan, L., Peng, L. and de Vries, C. G. (2001).
Using a bootstrap method to choose the sample fraction in tail
index estimation
Danielsson, J., Ergun, L. M., De Haan, L. and de Vries, C. G.
(2016). Tail Index Estimation: Quantile Driven Threshold Selection
R.L. Smith (1990) Max-Stable Processes and Spatial Extremes.
www.stat.unc.edu/postscript/rs/spatex.pdf

Schlather, M. and Tawn, J. (2003) A dependence measure for
multivariate and spatial extreme values: Properties and inference.
Rootzén, H. and Tajvidi, N. (2006) The multivariate generalized
Pareto distribution. Bernoulli 12, p.917-930.
A. Kirilouk et al. (2018) Peaks Over Thresholds Modeling With
Multivariate Generalized Pareto Distributions.
Rakonczai, P.: Multivariate Threshold Models with Applications to
Wind Speed Data (Ph.D. thesis, 2012)

Zempléni, András (ELTE) Price fluctuations (extreme value models) 23 / 23

www.stat.unc.edu/postscript/rs/spatex.pdf 

	Lecture 5

