# Regulators, capital adequacy models

16<sup>th</sup> May 2019

#### Why do we need to regulate the banks at all?

Banks play special roles:

- Operating settlement/payment systems
- Enhancing the growth of the economy

High social cost of bank crisis

Prudential regulation

The beginnings- establishing the Basel Committee on Banking Supervision

- Competition in making the regulation less strict
- First banking crisis in the 70's
- 1975: G10 countries established BCBS

Goal: formulating standards and recommendations, but not regulations enforceable by the law

## The beginnings- direct causes leading to Basel I regulation

1987:

- Stock market crash
- Portfolio Crisis
- Savings and Loans Crisis

1988: Pacol Lwas pub

Basel I was published

## The potential toolkit of prudential regulation

- Restrictions on holding certain assets
- Separating different activities
- Control of competition
- Rules of capital adequacy
- Risk-based pricing of debit insurances
- Regulations of disclosure
- Authorization
- Continuous monitoring

Special role of capital rules in the prudential regulation framework

- Protection against insolvency, enhancing riskorientation
- Need for uniform, international rules
- Basel I. 1988

Uniform definition of regulatory capital Role of the off-balance transactions The magical 8%

- Basel II. –2007-2013 (2006 parallel usage)
- Basel III. -2013-2018

## Capital rules in Basel I (1988)

- Capital needs to be set aside only for credit risks
- 0, 20, 50, 100% risk weights
- Also off-balance items: with credit equivalent
- Requirement: 8%, at least the half of it must be Tier 1:

$$\frac{\text{Capital}}{\text{Risk weighted assets}} \ge 8\%$$

## Causes leading to Market Risk Amendment of Basel I

1994:

- Bond Market Crash
- Increasing volume of exotic derivatives

1995

• Nick Leeson – Barings Collapse

1997:

• Asia market Crash

Innovation of Basel I: introduction of market risk capital adequacy -1996

Components:

- Equities and bonds in trading book
- FX risk in banking and trading book

CapitalRisk weighted assets + market risk components  $* 12.5 \ge 8\%$ 

Standard approach vs VaR-based capital modeling

## Capital requirement for market risk – standardized approach

- Risk of individual bonds (based on net position 0-12%)
- General risk of bonds (as function of the expiration/maturity, mapping specified in a table form)
- Risk of individual equities (2 or 4%)
- General risk of equities (net 8%)
- Capital requirements for counterparty risk and concentrated risks

## Capital requirement for market risk – VaR based approach

- level of confidence 99%
- 10-day holding period
- observations based on (at least) 1-year long data window
- Strict conditions of application

 max(VaR on the previous day, average VaR figure of the last consecutive 60 days \* correction factor) is the formula of the figure, which needs to be disclosed

## What was the problem with the Basel I rules?

- Did not differentiate appropriately
- Did not take into account the portfolio effects (diversification benefits)
- Did not take into consideration the risk mitigating effects (hedges)

## Basel II capital rules

| Pillar I                                                                                     | Pillar II                     | Pillar III                                       |
|----------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|
| Minimum capital<br>requirements for:<br>• credit risk<br>• market risk<br>• operational risk | Supervisory review<br>process | Disclosure<br>requirements– market<br>discipline |

Capital

 $\frac{1}{\text{Risk weighted assets} + (\text{market} + \text{operational risk components}) * 12.5} \ge 8\%$ 

- 1999 first version
- 2005 final rules
- 2007 possibility for applying
- 2008 mandatory application

## Application of Pillar I

| Credit risk                                     | Market risk            | Operational risk                      |
|-------------------------------------------------|------------------------|---------------------------------------|
| Advanced<br>internal rating<br>based model      | Internal VaR<br>models | Advanced<br>Measurement<br>Approaches |
| Foundation<br>internal rating<br>based approach |                        | Standardized approach                 |
| Standardized approach                           | Standardized approach  | Basic Indicator<br>Approach           |

## Standardized approach for credit risk requirement

- It does take account not only the type of the counterparty, but also its riskiness
- Usage of external ratings (like Moody's, S&P)

## IRB approach for credit risks

- Simplified regulatory model for calculation of the capital requirement
- Base IRB: bank does estimate the PD, LGD and EAD are fixed
- Advanced IRB: all parameters are estimated by the bank
- Real risk weights: calculating by pre-specified risk function
- Capital requirement: 8% of the risk weighted assets has been kept

### Capital requirement for operational risk

• Basic Indicator Approach: 15% of the average of the gross profits in the last 3 years

• Standardized approach: 12, 15 or 18 % of different profit indicators assigned to branches

 Advanced Measurement Approaches: modelling of the potential loss

## Problems with Basel II regulation

2007:

• Subprime Crisis (Bear Stearns, Lehman, AIG, Wachovia, Merrill Lynch, Morgan Stanley, etc)

#### 2008

• Financial Crisis (Societe Generale Rouge Trading, Credit Suisse Mispricing, etc)

2009

- Basel II.5 was published
- Basel III was published

On the way towards Basel III (2013-2018 continuous implementation)

- Re-regulation of capital items
- Introduction of leverage ratio (3% for the Tier 1 capital)
- Capital conservation buffer (2,5% above the minimum level)
- Introducing of stressed liquidity rate
- Introducing of liquidity rate for 1 year time horizon

# Basel 2.5 capital requirement for market risk

Sum of the following items:

- 10-day 99%-os VaR x backtest multiplier
- 10-day 99%-os stressed VaR x multiplier
- Incremental Risk Charge (IRC) for products in Trading Book potentially affected by credit risk (bonds, default swaps, etc)
- Comprehensive Risk Measure (CRM) for correlation products (indices, bespoke tranches, etc)
- capital calculated by the standardized approach for those products, where the above mentioned models have not been approved yet

#### Base idea of VaR calculation

Current value of the portfolio:

 $f(x_1, x_2, x_3 \dots x_k)$ 

Where  $x_i$ 's are different risk factors. We would like to measure the effect of change in these factors on our portfolio somehow:

$$PnL = f(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3 \dots x_k + \Delta x_k) - f(x_1, x_2, x_3 \dots x_k)$$

where the changes are random numbers (variables), hence the PnL as well, whose quantile we are interested in.

21

#### Methods for VaR calculation:

$$PnL = f(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3 \dots x_k + \Delta x_k) - f(x_1, x_2, x_3 \dots x_k)$$

- 1. Full revaluation:
  - a. Usage of parametric (mostly Gaussian) distributions. To be able to apply it appropriately the distribution of  $\Delta x_i$  's must fit well, additionally function f need be 'simple' enough (for instance linear)
  - b. Monte Carlo simulation: both distribution of  $\Delta x_i$ and f can be arbitrary, but this method is very calculation-intensive!

### Methods for VaR calculation:

- 2. Calculation using approximations:  $PnL = f(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3 \dots x_k + \Delta x_k)$   $-f(x_1, x_2, x_3 \dots x_k)$   $= \sum_{i=1}^{n} f'_{x_i}(x_i) \Delta x_i + \frac{1}{2} \sum_{i=1}^{n} f''_{x_i x_i}(x_i) (\Delta x_i)^2$ 
  - $+ \ {\rm mixed \ second \ order \ components}$

+ higher order components

Issues at the implementation:

- finding appropriate risk factor
- gappy time series for a risk factor
- effect of the skipped components
- nonlinear products (options, etc)
- alternative models (f functions)

## Modelling of default risk

i=1...N issuers (borrowers) Point of time when they default:  $\tau_i$ The (random) loss at the default of the i-th issuer:  $l_i$ Our loss in the [0,T] time period:

$$L = \sum_{i=1}^{N} l_i I(\tau_i \le T)$$

Hence the expected loss:

$$E(L) = \sum_{i=1}^{N} p_i E(l_i | \tau_i \le T)$$

where:  $p_i = P(\tau_i \le T)$ 

#### Default risk – value process

Let us assume, that there exist such X<sub>i</sub> continuous random variables (asset values) and fixed c<sub>i</sub> thresholds (liquidation values), that:

$$\{\tau_i \le T\} \equiv \{X_i \le c_i\}$$

This means, if  $F_i^X$  denotes the cumulative distribution function of  $X_i$ :

$$c_i = \left(F_i^X\right)^{-1}(p_i)$$

#### Default risk – systematic factors

Additionally, let us assume that there exists a ddimensional Z random vector (with 0 means and with unit variance components ), that  $(X_1, X_2... X_N, I_1, I_2... I_N)$ is conditionally independent from Z.

Typical interpretation of components of Z:

- general state of economy
- situation of one single industry, etc.

#### Default risk – systematic factors 2.

From the conditional independency:

$$E(L) = E\left(\sum_{i=1}^{N} p_i(Z)l_i(Z)\right)$$

Where:

 $p_i(Z) = P(X_i \le c_i | Z)$  $l_i(Z) = E(l_i | Z)$ 

## Default risk – simplest Gaussian copula model

Where  $R_i$ 's are non-random values on [0,1] (recovery rates),  $l_i^{max}$  denotes the exposure toward the i-th issuer.

 $\varepsilon_i$ 's are iid's, which are independent from Z and have standard normal distribution.

#### Default risk – random recovery

$$\sum_{\substack{k=1 \ i \in \mathbb{Z} \\ l_i = l_i^{max} (1 - C_i(\mu_i + b_i Z + \xi_i))} } i = 1 \dots N$$

Where  $\xi_i$  's are independent both form Z and  $\varepsilon_i$  's, as well as from each other. They have zero means and  $\sigma_{\xi_i}^2$  variance.

 $C_i$ 's are arbitrary functions with [0,1] values.  $\mu_i$ 's are constant parameters.

## Default risk – random recovery 2.

Statement:

Let us denote the cumulative distribution function of  $~~\epsilon_i$  by  $F_i^\epsilon$  .

Then:

$$p_i(Z) = F_i^{\varepsilon} \left( \frac{(F_i^X)^{-1}(p_i) - a_i Z}{\sqrt{1 - \|a_i\|^2}} \right)$$

Proof:

We need only to apply the definitions. (very simple)

#### Default risk – random recovery 3.

Statement:

Let  $C_i$ 's be strictly monotonous increasing functions. Let us denote:  $Y_i = \mu_i + b_i Z + \xi_i$  and  $\sigma_i = \sqrt{b_i \cdot b_i + \sigma_{\xi_i}^2}$ If  $(X_1, X_2... X_N, Y_1, Y_2... Y_N)$  belongs to the group of continuous elliptical distributions:

$$\tau(X_i, X_j) = 2\pi^{-1} \sin^{-1}(a_i \cdot a_j), i \neq j$$
  
$$\tau(R_i, R_j) = \tau(Y_i, Y_j) 2\pi^{-1} \sin^{-1} \left( \frac{b_i \cdot b_j}{\sigma_i}, j \right), i \neq j$$
  
$$\tau(R_i, X_j) = \tau(Y_i, X_j) 2\pi^{-1} \sin^{-1} \left( \frac{b_i \cdot a_j}{\sigma_i} \right)$$

Where  $\tau$  denotes the Kendall rank correlation.

#### Reminder- rank correlation

Let X and Y be arbitrary random variables. Then:

$$\tau(X,Y) \stackrel{\text{def}}{=} P\left(\left(X - \tilde{X}\right)\left(Y - \tilde{Y}\right) > 0\right) \\ - P\left(\left(X - \tilde{X}\right)\left(Y - \tilde{Y}\right) < 0\right)$$

Where  $(\tilde{X}, \tilde{Y})$  is an independent copy of (X, Y).

#### Default risk – random recovery 4.

Statement:

Let  $C_i = \Phi$  (std normal cumulative distribution function) Then:  $P(R_i < x) = \Phi\left(\frac{\Phi^{-1}(x) - \mu_i}{\sigma_i}\right)$  $E(R_i) = \Phi\left(\frac{\mu_i}{\left(1 + \sigma_i^2\right)}\right) \qquad V(R_i) = \Phi_2\left(\frac{\mu_i}{\sqrt{1 + \sigma_i^2}}, \frac{\mu_i}{\sqrt{1 + \sigma_i^2}}; \frac{\sigma_i^2}{1 + \sigma_i^2}\right)$  $-\Phi\left(\frac{\mu_i}{\sqrt{1+\sigma_i^2}}\right)^2$ 

Where  $\Phi_2(.,.; \varrho)$  denotes the two-dimensional standard normal cumulative distribution function with  $\varrho$  correlation.

Towards Basel '4': Fundamental Review of Trading Book (FRTB)

- Eurozone crisis seems to last for a couple of years
- Big differences between model-based and standardized capital charges
- Trembling reliance on internal models

Towards Basel '4': Fundamental Review of Trading Book (FRTB)

Goals:

- Make the currently used market risk models more standardized
- Decrease the gaps between model-based and standardized capital charges
- Removing the parallelisms in the capital requirements



Towards Basel '4': Fundamental Review of Trading Book (FRTB)

Other risk measures:

- IRC -> DRC (default risk charge)
- CRM -> will be defined at a later
  - stage (disappear?)
- Std charge -> the size of it will be reduced

## Towards Basel '4': changes in Credit Risk

According to a paper published by Basel Committee in December 2017 (first appeared in 2016):

- A-IRB model cannot be used at the following exposures:
  - Banks and other financial institutions
  - Corporates (above consolidated annual revenues of 500 m EUR)
  - Equities
- Even if A-IRB remains applicable, certain model parameters will be constrained
- Further specification of parameter estimations

#### Beyond the Basel regulation – stress tests

Stress testing system has been the key innovation in capital regulation and was found to be the binding capital constraint in many cases.

Pro's:

- It makes other risk measures more effective
- Forward-looking assessment of potential losses
- Might be consistent across banks

#### Beyond the Basel regulation – stress tests

Con's:

- Inherit need for adaption
- It does not take into account second-round effects

#### Stress test in US - CCAR

Comprehensive Capital Analysis and Review

- Annual exercise from 2009 on
- Capital projections based on several stressed scenarios
- Calculations are done both by the banks and the regulator (Fed) separately
- Dividend and share repurchases will be permitted based on the result of this exercise

#### Stress test in US - CCAR

Features of this exercise:

- Requirements are not explicitly disclosed in advance
- This stress test must never be static
- It might have 3 outcomes: objection, conditional non-objection, non-objection
- Contains quantitative and qualitative requirements
- Stricter requirements for G-SIB's (banks of global systemic importance)

#### Stress test in US - CCAR

Future plans:

- Qualitative objections will be phased out
- SCB (Stress Capital Buffer): replaces the existing 2.5% fixed capital conservation buffer

It has become a Fed proposal

#### Stress Capital Buffer in US



## **References:**

- Mérő, K.: Banking regulation and control, MNB presentation, September 2010.
- Mérő, K: Basel II Capital Rules , MNB presentation
- Andersen, L. Sidenius, J.: Extensions to the Gausssian copula: random recovery and random factor loadings, Journal of Credit Risk, Volume 1, 2004/05
- Basel Committee on Banking Supervision: Fundamental Review of the trading book: A revised market risk framework, Consultative Document

#### Further references :

- Basel Committee on Banking Supervision: Reducing variation in credit risk-weighted assets – constraints on the use of internal model approaches, Consultative Document
- Basel Committee on Banking Supervision, Basel III: Finalizing post-crisis reforms, December 2017
- Departing Thoughts, Remarks by Daniel K. Tarullo, Princeton University, New Jersey, 4<sup>th</sup> April 2017
- Federal Reserve Proposes "Stress Capital Buffer" and Scales Back Supplementary Leverage Ratio, Cleary Gottlieb, April 16, 2018