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Preface

Our aim with this note is to help our students, taking the courses
"Statistical Program Packages" 1-2. We are happy that there is an
increasing number of international students coming to our instituti-
on. Quite a few of them have interest in statistics, and these courses
are especially useful for an application-oriented curriculum. Here we
mostly use the R program, this motivates our choice for the computing
background of this note. There are quite a few tutorials available on
R as well as textbooks on statistics, so we decided to write a lecture
note, which may serve both purposes: it is an introduction to the most
important applied statistical methodology and a practical manual for
the programming language R, without being too technical. The target
group includes advanced undergraduate students with a basic under-
standing of probability and those graduate students, who need applied
statistics to their work.

The note consists of five sections: after this brief introduction, the first
section gives an insight into R, focusing on the practical issues, needed
for its successful usage. The second section focuses on the descriptive
statistics, necessarily a first step in data analysis. Next, we present the
basic theory of hypothesis testing and show the most important sta-
tistical tests, including both parametric and nonparametric methods.
The fourth section contains the important task of regression modelling.
These linear models are an important part of many applied statistical
projects. Finally we give a short introduction to the Analysis of vari-
ance, which is formally also a linear model, but it has so many unique
features that it could have filled not only a short section, but a whole
book. We close the lecture note by a list of references.

Acknowledgement

The preparation of this lecture note was supported by the Higher
Education Restructuring Fund allocated to ELTE by the Hungarian
Government.
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I. The R programming language

I. The R programming language

Introduction

The programming and statistical package R has by now a history of over 20 years. The reason for its
short name can also be found at the beginning. One of the first statistical packages was called S (obviously
coming from Statistics). As it has been developed by a profit-oriented company, one had to pay annual
licence-fee for it. These amounts were considered as being too high by some university professors and its
relative inflexibility also motivated the creation of another, continuously developed package, which contains
all of the most recent methods. The needed syntax was very similar to that of S, this was also emphasized
by the name. The success of this initiative was probably a surprise even for the organisers: nowadays
almost every researcher in mathematical statistics uses this language. The number of libraries, which have
to fulfill strict standards, is over 7500!

The use of R looks more complicated as the usual menu-driven programs (like SPSS – which is especially
popular in the social sciences). But those have also to be programmed, if similar analyses are to be re-
peated. However, if we consider the fact that here we speak about a completely functional programming
language, then its use is not more complicated than any of its similar rivals. But it has an enormous
advantage, namely that the statistical functions are readily available and it is easy to process their results,
being standard objects in the R environment. In most of the cases we need just a few simple commands
to apply these programs to our data sets. We show these simple methods in this lecture note.

R uses the GNU program-license (GPL) together with its approach. It means that in most cases the
programs written in R can be used even for programs that are sold (Lesser GPL). There are some libraries,
however, which pose stricter conditions and can only be used to free programs. One can find out the
conditions from the license of the given package. The legal rights are at the foundation ‘The R Foundation
for Statistical Computing c©’. The official informations are available at the webpage www.r-project.org.
Here the complete source code of the program as well as a vast number of handbooks written in different
languages can also be found.

– —– –

The structure and application of the R environment

I.1. Installation of R 3.
I.2. An introductory sequence of commands 4.

1.1. Installation of R

One can download the latest version of R from the
webpage www.r-project.org, but the earlier vers-
ions can be found here as well. The basic system is
contained in an .exe file, which installs the system
to our computer without downloading further infor-

mations from the internet. This base system should
definitely be enough during the first steps of learning
R. However, we shall se that even the installation of
add-on packages in a very simple task.
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1.2. An introductory sequence of commands

We start the introduction to the package R with the
overview of some basic commands.

On the webpage https://cran.r-project.org/
one can choose ’Help » Manuals (in PDF) » An
introduction to R’ to get to a very useful, app-
roximately 100-pages introduction of R It can be
opened directly in R by the RShowDoc("R-intro")
command.

There is a three-page commented sequence of com-
mands in R-intro.pdf, starting on page 84 (numbe-

red as 78). If we study this part, we get a comprehen-
sive impression on the logic of the program. Unfor-
tunately to understand this presentation, one needs
quite deep mathematical-statistical knowledge.
As with the writing of this note we had in mind such
students who intend to get deeper statistical know-
ledge with its help, before starting the statistics-
part, we give such an introduction to R, which ne-
eds less professional knowledge and gives insight into
some more technical details without bothering with
a systematic but lengthy syntactic introduction.

———

The presentation will contain the following parts:

I.2.a Starting and ending an R session 4.
b Aritmetics, requesting help and examples 6.
c Plotting and editing data sets 10.
d Program structuring 14.
e Data input and output 15.

:::::
1.2.a

:::::::::
Starting

:::::
and

:::::::
ending

:::
an

:::
R

::::::::
session

Under Windows operating system, after the usual se-
tup, an icon, forming traditionally a large blue letter
"R", is created. It refers to the program Rgui.exe
within the actual version. Let us start it!

After the first lines, containing some introductory
informations, a red ‘>’ sign appears. It shows that
the graphic interface of our program waits for a com-
mand.

If we type an arbitrary character sequence after the
sign ‘>’, and let it run with the help of the key
[Enter] then the system evaluates and runs the
character sequence. The textual part of the result
will be shown in the command window, the graphi-
cal part in a separate sub-window.

If we ‘succeeded’ to type such a sequence of cha-
racters, that cannot be understood as a complete
sequence — like ‘abc(’, — then we get no message,
but a ‘continue’ prompt, i.e. a ‘+’ sign. We can get

rid of it by pushing the key ‘[ESC]’ which results
the system to go back to its baseline state, giving a
‘>’ sign, i.e. an ‘ordinary’ prompt.

The character sequences which have been typed ear-
lier, can be recalled by the up-arrow key. They may
be edited and run by the key [Enter] again.

———

Having started a new program, the most important
question is: How can one exit? What determines
the status of the environment at the start and at the
end? One can exit the system either through the
menu by ‘File » Exit’ ot by typing the command
q() (followed by [Enter]). Both ways activate the
same exiting process and before the actual closing
of the program we get the question in an internal
window:

Save workspace image?
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The question refers that whether do we wish that at
the next call of the system, the same variables, com-
mands should be actual, and be ready to use by the
up-arrow key as they were at the moment of the exit.
If we answer the question with yes, then the system
writes a file (.Rhistory) containing the last typed
commands and another file (.RData) with the values
of the actual variables and functions. The system at
the start investigates whether these files can be fo-
und. If yes, then their content becomes actual: the
data and the functions are loaded into the working
space and the commands in .Rhistory become re-
ady to use by the up-arrow key, so we can continue
our work in the same environment as it was at the
time of the last exit.
We may avoid the Save... question, if we write the
desired answer as the argument of the q() function:
as q("yes") or q("no").
q is actually the abbreviation of the command
quit(), which can be seen if we type q and push
the Tab key, then it becomes visible, which further
calls are available starting with q at the given state
of the system.

It is very practical to set the working directory as
we wish. In order to do so, let us first create a direc-
tory C:/TMP! We may either set the properties of the
R icon so that the directory C:/TMP should be the
working directory of R at the start, or we may type
the command setwd "C:/TMP". Either way, when
typing the

getwd()
command, we get the

[1] "C:/TMP"
line as answer.

There is an important point to be mentioned he-
re. The distinction between data and commands
(functions) is based on the simple observation that
commands are always followed by an opening brac-
ket. That is why we have not got the continuation
prompt after ‘abc(’ as it was waiting for the closing
bracket ‘)’. Should we write the sequence ‘abc()’,
then we get

Error: could not find function "abc"
as the sequence ‘abc’ was considered as a potential
function. If we give ‘abc’ without any brackets,
then the error message would be

Error: object ‘abc’ not found
as ‘abc’ was considered as a data base.

———

Now let us show, how can the system be used e.g.
for simple calculations. Let us type and ‘run’ by
[Enter] the string 3^2+4^2 The command and the
result is as follows:

> 3^2+4^2
[1] 25
>

So the system calculates the value of the given for-
mula and writes the result to the screen, and gives
another prompt, waiting for the next command.

The output [1] before the actual result is due to
the fact that the result is part of a structure, where
the different parts are numbered. Here the result
consists of a single part, which is of course the first.

Let us type and ‘run’ with [Enter] the following
strings one-by-one: ‘X<-2’, ‘X’ and ‘(X<-3)’!
The result is the following:

> X<-2
> X
[1] 2
> (X<-3)
[1] 3
>

With this we have demonstrated how to create va-
riables in R. The first command created the object
named X, which has got the value 2 by the two-
character combination ‘<-’. The second line con-
firms that X was indeed created and its value has
become 2. In the third command we gave a value
to the variable X again. This command shows two
things: first that we can overwrite the values of a
given variable without any problems, and that the
brackets do not have any effect on the output.

Now let us type to the command line the following:
(X<-NULL);ls();rm(X);ls()! After the [Enter]
The result on the screen is the following:

> (X<-NULL);ls();rm(X);ls()
NULL
[1] "X"
character(0)
>

We have written four commands in a line, separated
by the semicolon character ‘;’.

The first command gives to X the special NULL value.
It is important to note that R distinguishes between
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the lower- and the uppercase letters! ‘NULL’ has
to be written capitalized! The result is the empty
object, named "X", as it is seen from the output
‘NULL’. The next line of the result is the answer to
the command ls(), which is the list of all, actually
existing objects. To the third command there is
no output. It just deletes the variable X from the
working space. The character(0) result of the last
command shows that after the deletion of X there
were no variables left in the working space.

———

Now we show the behaviour of the logical variables.

> X<-3;Y<-4;
> X^2+Y^2==25
[1] TRUE
> c(TRUE,FALSE,T,F)
[1] TRUE FALSE TRUE FALSE
> (F<-1);FALSE<-1
[1] 1
Error in FALSE <- 1 : invalid ...
> ls()
[1] "F" "X" "Y"
> rm(list=ls())
> F
[1] FALSE
>

In the first command we see a double equation sign,
‘==’. It tests if the two sides of the equation are
equal or not. In our case the commands in the first
line ensure that the value of x2 + y2 is indeed 25. So
the result of the test is TRUE. Should we have written
24 instead of 25 the result would be FALSE.

One has to be careful: the simple equation sign wo-
uld be essentially equivalent to assigning a value:
‘ Z = X2 + Y2 ’ would assign a value to Z.

The second command creates and prints a logical
vector of length 4. Its result shows that TRUE and
FALSE are built-in logical constants. But as default,
the values of the variables T and F is also TRUE and
FALSE, respectively.

The third command line shows that the variables
T and F can be overwritten, but TRUE and FALSE
can’t. The system performs the first command, but
the second one results in an error message.

The result of the fourth command shows that bes-
ides the variables X and Y another new F variable
was created, which has value 1.

The last command line is again a rm() command.
But this case its arguments re not variables rm(X,Y),
but the list parameter of the rm() was assigned the
value ls(), which resulted in the deletion of all the
three variables.

The fact that the variables were deleted, is shown
by the result of the last line. Here we see that the
variable F has got back its original value, since we
have deleted the variable, which covered it. So we
have to be very careful when using these abbreviated
variables T and F for logical purposes.

Typing the question mark activates the help func-
tion. So ?"==" gives that the negation sign is !,
i.e. the exclamation mark. By the binary operation
"!=" we may test the non-equality of the expressions
on the two sides. But the results of !TRUE is FALSE.

———

:::::
1.2.b

:::::::::::::
Arithmetics,

::::::::::
receiving

:::::
help

:::::
and

::::::::::
examples

:

Assigning values

For assigning values we have always used the two-
character code "left arrow" <-. In theory it is also
possible to give values to the right by the "right
arrow" ->. It looks as the double arrows <<- and
->> have seemingly the same effect. Even more it

looks as the equality sign = does just the same.

But it is not completely true!

The original meaning of the equality sign in R is
assigning values to parameters. We have already
seen this meaning in the command rm(list=ls()).
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Now it is acceptable in the core functions of R, but
there are minor differences, which may be affecting
more sophisticated programs – not covered in this
introductory note.

However, there are minor differences in the effect of
these commands. The <<- and ->> double arrows
define values not only in the actual evaluation en-
vironment (like the simple arrows), but also in the
calling environment. This can be seen best when
defining functions as follows. In the next program
segment we define a function tt by two different co-
des. First observe the definition itself: it has to be
started by a definition: tt<-function(t) followed
by the actual definition in curly brackets. The last
command return(y) is the actual result of the func-
tion.

x<-y<-NULL

tt<-function(t) {x<-2;y<-x+t; return(y)};
x<-3;rm(y);tt(4);x;y

tt<-function(t) {y<<-x+t; return(y)};
x<-3;tt(4);y

The result of the first call:
[1] 6
[1] 3
Error: object ’y’ not found

We see that the function uses its ‘own’ value x so
6 is returned. However the assignment <- does not
change the existing value of the variable x and does
not define a variable y in the calling environment
either.

By the definition of the second function together
with its calling environment:

x<-3;rm(y);tt(4);y
we get:

[1] 7
[1] 7

Which shows that the function ‘sees’ the x variable
of the calling environment and by the value given by
the double arrow, a variable y has also been crea-
ted, taking the value from the function environment.

Summarising

- When a function is called in R, the system

creates an internal environment, which is deleted
after the commands were run.

-The commands of the functions are first evalua-
ted within this internal environment, but if needed,
it can use values from the calling environment as
well.

- Information to the calling environment can
only be transferred by the double arrows and the
return() command.

- This returned value can be used for giving va-
lues to variables.

We shall use the left arrow <- for giving values,
following a ‘traditional’ approach. The use of the
‘arrow’ as the value assigning code has also historical
reasons, but its use has a practical meaning as well:

so the value giving <-
the parameter assignment = and
relation code == can easily be distinguished.

Special constants

NA (i.e. Not Available): missing value
NaN=0/0 (k.e. Not a Number): not defined
Inf=1/0 : infinte

Interesting operation signs

x %% y the residual of a division (x mod y)
x %/% y the integer part of a division

Thus the result of the next sequence of calculation
is TRUE for any x and y:

x<-4;y<-3;((x%/%y)*y+x%%y)==x

Vectors are the simplest data structures

Until now we have used variables that contain a sing-
le number, except in the case when we have used the
concatenate command c(x,y). This c() concatena-
te function joins the two variables, resulting in a vec-
tor of length 2. The length of such joined elements
can be longer as well:

x <- 1;y<-2;
z <- c(x,y)
length(z)
length(c(x,y,z))

As the result of the second last row shows, z is a vec-
tor of length 2, while the length of the concatenated
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vector of the last row is 4.

There are much more convenient tools for creating
longer vectors.

The ‘:’ where the ’:’ is between two numbers can
be understood as an arithmetic sequence of num-
bers, where the difference is 1, the starting number
is the one on the left hand side and the last one is the
last number, which falls within the interval between
the two given numbers. So 1:3 means the sequence
c(1,2,3), 3:1 the sequence c(3,2,1), and .5:pi
is the same as c(.5,1.5,2.5) as pi has the default
value 3.14159.

Using ‘:’ we have to take care that the evaluation
of : precedes the evaluation of the basic arithmetic
operations, so 1:5+4 is a sequence of numbers from 5
to 9, while 1:4/2=c(.5,1,1.5,2). On the othe side
1:3^2 has 9 elements, and -1:3==c(-1,0,1,2,3)
but 2-1:3==c(1,0,-1).

Another, more sophisticated tool for creating sequ-
ences is the use of the function seq(). Here one can
define as parameters the step size and the length of
the sequence to be created. The next four lines de-
fine the same sequence:

seq(2,4)/2
seq(1,2,by=.5)
seq(1,2,length=3)
seq(1,2,along=1:pi)

The operations for vectors are to be understood ele-
mentwise. We can see this for the example 1:5+4
E.g. the value of 1:4+2:5 is the same as the vector
c(3,5,7,9).

Logical operations

In R ‘and’ is denoted by ‘&’, and ‘or’ by the sign ‘|’

Zero is the only number with logical value FALSE
all the other numbers have value TRUE. The result
of the logical operation 1:3==3:1 is a logical vector
c(FALSE,TRUE,FALSE). If we want to get that the
vector 1:3 is elementwise equal to the vector c(1,3),
then we can see it e.g. by applying the function
all(): all(1:3==c(1,2,3)). It can be reached al-
so by the operation ‘&&’: (1:3==c(1,2,3))&&TRUE
(if we have used the single &, then the result would
be a vector of TRUE having length 3). We can see

that among the elements of 1:3 and 3:1 there are
equals, by the command any(1:3==3:1).

But we have to be careful! If we do calculations with
two vecors and the vectors are of different length,
then the system repeats the shorter vector until a
vector of the same length as the longer is got.

This means that the result of the function
1:10-c(1,2) is the same as
rep(seq(0,8,by=2),each=2), i.e.
c(0,0,2,2,4,4,6,6,8,8). Here we have used anot-
her function, very useful for creating vectors, namely
the function rep().

The above-mentioned cyclic addition is logical if we
want to subtract e.g. 1 from every element o a vec-
tor: c(7,3,5)-1 is the same as c(6,2,4). But the
command c(6,2,4)-c(1,2) is not correct, as the
length of the longer vector is not an integer times
the length of the shorter vector. We get a warning:
(’Warning message:...’), but the value of the result
is the vector c(5,0,3).

Ordering: sort(), order() and rank()

v<-c(.3,.1,.5,1);
sort(v)
(s<-sort(v,index=TRUE))
v[s$ix]
(ii <- order(x <- c(1,1,3:1,1:4,3),

y <- c(9,9:1),
z <- c(2,1:9) ) )

cbind(x,y,z)[ii,]
rank(c(7,4,3,5))

The default value of sort() is the ordered vector of
the elements of its argument vector index=FALSE

If we call the function sort() with the parametri-
zation index=TRUE then the result is a list of two
elements. The upper element of it, $x, is the sorted
vector, while the second is $ix, an index vector,
which gives the number of the elements of the sor-
ted vector in the original one. This means that the
original v vector indexed by s$ix: v[s$ix] is the
same as sort(v).

The result of the order() shows that this command
is just a lexicographic ordering. In our example it
gives that the 3 vectors of length 10 arranged in
columns, and reading the resulted matrix row-wise,
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which is the first, the second etc. from the 10 rows
of length 3.

The result of rank is a permutation. It gives that
what is the rank of the elements of the original vec-
tor after the ordering.

Requesting help

We can get immediate help by the function help()
or the question mark ’?’. So e.g. for the function
seq() we may get help by calling help(seq), or
help("seq"), possibly ?seq.

We must note that on the upper-left corner of the
information sheet we got, the text seq(base) is to
be seen. This is slightly misleading, as "base" does
not refer to the possible parametrization, but for
the fact that the given function belongs to the base
package.

Consulting e.g. the help page of seq() it can be seen
that it consists of parts, which are standard within
R: Description // Usage // Arguments // Details //
Value // References // See Also // Examples. The
last part is especially useful, as these commands can
be tried not only using copy-paste option, but also
simply using the function example().

More general help may be got by the command
help.start(). This activates the default web brow-
ser with a page, where the same handbooks can be
reached in .pdf format, as from the Help button of
the Rgui menu line. Continuing along "Packages"
we get a list of all the extensions which are installed
under the given version of R.

Coincindence of names

In the next sequence of commands we show an
example, which can easily be realized during
programming. We define a variable cor which has
the same name as a function.

find("cor")
cor<-1:pi
find("cor")# ".GlobalEnv" "package:stats"
find("cor",mode="function")
find("cor",mode="integer")
cor[2];cor(1:3,3:1)
cor<-function(x,y) return(sum(x^2+y^2))

find("cor",mode="function")
cor(1:3,3:1)
rm(cor)
find("cor")
cor(1:3,3:1)

The ".GlobalEnv" denotes the base environment of
"Rgui.exe". The value of cor[2] is 2. The value
of cor(1:3,3:1) is -1, as the correlation between
the vectors is -1 due to the second being a linear
transform of the first, with negative steepness.

In the next part we have rewritten cor again, this
time with a function. Now calling cor it is not clear,
which one we have in mind. R chooses the one,
which is first found, i.e. .GlobalEnv. This implies
that the result of the call cor(1:3,3:1) is 28. In this
case if we want to call the cor function of package
stats, then we must state explicitly that we need the
one from package stats by stats::cor(1:3,3:1).

If we use three colons ‘:::’ instead of two, then
the expression pkg:::name returns the value of the
internal variable name in package pkg if the package
has a name space.

The ‘datasets’ package contains the most impor-
tant demo data sets for the system. We can get a
list of these and data sets from given packages as
follows:

data() # every data set
data(package="cluster")

Examples, i.e. the demo()

This is left as last – but we may have started with it
–: the demo materials of the base system and other
packages.

demo()
demo(smooth)
demo(graphics)

The command demo() shows those demonstrational
programs, that are loaded at the moment. (See e.g.:
search(), or based on their location in the operat-
ing system: searchpaths()). The sequence of plots
demo(smooth) is one of the demonstrational sequ-
ence of the package stats. The demo(graphics) is
interesting visually as one of the demo of the package
graphics.
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:::::
1.2.c

::::::
More

:::::::::
complex

::::::
data,

:::::::
figures

Until now, we have seen that one can build
vectors from numbers or logical values. The
same is true for character type variables as well:
a<-"abc";b<-"def";c(a,b), which results in a

vector with two components: "abc" being the
first and "def" being the second. If we want to
paste them, it can be done by the help of the
paste() command: paste("abc","def",sep="").
Here the parameter sep was needed, ensuring that
there is no space left between the two charac-
ter sequences. Thus we have omitted the de-
fault space, but we may even change it, like
paste("abc","xyz",sep="(beginning-end)") .

The substrings of character sequences can be
got by the function substr(). The result of
substr("abcdef",3,4) is "cd". Further important
functions for manipulating character-valued variab-
les is the nchar() giving the length of a character
sequence and the strsplit(), which allows for cut-
ting the sequence.

Matrices

The matrices are also vectors with respect the defi-
nitions of the R system. More exactly such vectors,
which have a dim attribute, which can be declared
and be handled as follows.

(M<-matrix(1:6,2))
class(M)
attributes(M)
str(M)

A<-1:6
attributes(A)$dim<-c(2,3)
class(A)
str(A)
list

The code for matrix-multiplication is %*%. The com-
mon multiplication code * means the element-wise
product.

(M<-matrix(c(1,3,2,5),2))
(x<-matrix(1:2,2))
M%*%x
solve(M)

(I<-solve(M)%*%M)
round(I,5)
round(I-diag(1,2),5)

The function solve() computes the inverse of a
matrix. The result of the product M−1M shows that
we get identity up to an error of 10−16. The result of
the diag(c(1,2,3),3) function call is a 3×3 diago-
nal matrix with the vector c(1,2,3) in its diagonal.
The example shows that the result of diag(1,2) is
a 2× 2 identity matrix.

Elements or submatrices of the matrix can be subt-
racted. One may get new matrices from the ele-
ments, as the following example shows.

(M<-matrix(1:12,3))# 3x4-row-wise
M[2,3] # this is 8
M[2:3,c(1,3,4)] # 2x3
M[-1,-2] # the same with deletion
M[c(2,2),c(2,2,1)] # this is 2x3 as well

Matrices may be 1 or 2 dimensional. But be careful:

(M<-matrix(1:12,3))
M[,1] # this is not a matrix
M[,1,drop=FALSE] # while this is one...

So the submatrix, if it has dimension 1 in one di-
rection, looses its matrix attribute. This can be
hindered by applying the ‘drop=FALSE’ option. The
same is true for the ‘array’ type variables.

The columns, rows, or even its elements can be na-
med, as the following commands show.

M<-cbind(a=1:3, pi=pi)
class(M)
str(M)
dimnames(M)
dimnames(M)[[1]]<-c("a","b","c")
dimnames(M)
names(M)<-c("A","B","C","D","E","F")
M
M["A"] # an element
M["a",] # a row
M[,"a"] # a column
rm(M)

A matrix can be built column-wise by the command
cbind. The same for rows is achieved by the com-
mand rbind. We may get the size of a matrix on
different methods:
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(M<-rbind(1:3,1));dim(M)
nrow(M);ncol(M);dim(M)[2]

Arrays

A array(1:120,c(2,3,4,5)) creates a 4 dimensio-
nal array, consisting of 120 elements. These arrays
can be added, pasted and used in other operations
like matrices.

A special operation for arrays is the outer product
%o% The result is an array, which has as dimension
the sum of the dimensions of the original arrays. The
elements are simply the products of each element of
the first array with each element of the second array.

A<-c(1:3)%o%array(1:24,c(2,3,4))
dim(A);class(A)
B<-c(1:3)%o%c(1:24)
dim(B);class(B)
attributes(A);attributes(B)

"A" is an array of 1 + 3 = 4 dimensions, while "B"
is a matrix.

Most of the calculations are done with matrices.
However from the statistical analytical point of view,
the so-called ‘data.frame’s are more important. The-
se are actually ‘list’s with special format. The ‘list’s
have several similar aspects as vectors (or matrices).

Variables with a structure ’list’

The list is like a long rod, for which – at any point
– an arbitrary variable (or even a new list) can be
hung.

a<-3;bb<-c(1,3,4);M<-matrix(1:8,2)
(Li<-list(a,bb,M))
(L<-list(A=a,B=bb,XX=M,Utolso=Li))

The second list differs from the first that its elements
can be reached by names as well.

L[1];L[c(3,1)];
L[[1]]
class(L[[1]]);class(L[[4]]);
L$A;class(L$A)
attributes(Li);attributes(L)

We can see that one can refer to a given element of
the list by the double bracket ‘[[’ command. The
single bracket ‘[’ defines just a part of the list.

Data having the list attribute are important in R,
because the result of the functions in most of the cas-
es is a special list. This is not obvious for the first
glance, as the result is fed to the print() functi-
on, which has different output methods for different
types.

The following is a simple example for this:

D<-density(c(1,1,2))
D
class(D)
attributes(D)
str(D)
as.numeric(D)
D;fivenum(D$x);fivenum(D$y)
plot(D$x,D$y)
plot(D)

The function density() calculates an estimate for
the continuous density of the sample, based on 3
observations. It is purely technical, such a small
sample size cannot have any statistical meaning.
But it is a good example for investigating the struc-
ture of the result. print.density() gives just the
basic statistics for the two variables, upon which the
graph of the estimated density is based. The last
two commands show that we get essentially the same
figure based on the two coordinates of the result D
as the class-assigned plot.density().

The format ‘data.frame’ differs from the format ‘list’
only in that respect that all of the elements are ‘vec-
tor’s of the same length .

Operations with data frames

The following operations are the most common ones.
Picking rows of the data.frames
joining two data.frames by given key,
calculating statistics for given groups of rows.

Their realization in R:

subset.data.frame
merge.data.frame
aggregate.data.frame
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The command subset(x, subset, select) helps
to choose the rows we want to keep and at the same
time to delete those which are not needed. This
operation is based on a logical vector, corresponding
to the rows of the data.frame.

The command merge(x,y,...) is suitable to joi-
ning two data frames by a common key. It can
be suitably parametrized with respect to the joined
rows (e.g. are partially filled rows allowed etc.).

The command aggregate() is very useful for cal-
culating statistics for groups of rows, defined by
different values of a grouping variable.

If the question is whether elements of a vector can
be found among the elements of another vector, then
we may get a logical vector containing the answer by
the operation %in%. For example the result of the
c(1:2)%in% 2:12 command is a c(FALSE,TRUE)
vector.

Drawing tools

The plot() command draws the data given as its
arguments into a new graphical window, as determi-
ned by its additional parameters.
The result of the next sequence of commands is a
plot, consisting of three red points.

x <- c(1,2,3);y <- c(2,5,4);
plot(x,y,cex=2,pch=19,col="red")

In this parametrization cex defines the size of the
dots and pch defines the character to be plotted.
The limits of the x and y axes are taken from the
data. But it may be unsuitable if we add a broken
line or new points.

y2 <- c(2,7,4);
y3 <- c(3,1,3);
lines(x,y2,lw=5,col="green")
points(x,y3,cex=2,pch=19,col="blue")

In these cases it may be needed to set these limits
beforehand:

plot(x,y,cex=2,pch=19,col="red",
xlim=c(0,4),ylim=c(0,8))

lines(x,y2,lw=5,col="green")
points(x,y3,cex=2,pch=19,col="blue")

In the simplest case, if we want to plot a graph
of a function, we may use a command like this:

plot(sin). The only problem here is that the va-
lues of the x axis are within [0, 1]. The following
parametrization gives a result we expect, knowing
the form of the function sin(x).
plot(sin,xlim=c(-4*pi,8*pi))
abline(h=0);abline(v=0)

If we have a thorough look at the figure, we may
observe that the curve is slightly rugged. It is ca-
used by the too few points, upon which the graph
is based. We can change the number of points as
follows:
x <- seq(-8*pi,18*pi,l=1001)
x2 <- seq(-8*pi,18*pi,by=13*pi/6)
x3 <- seq(-8*pi,18*pi,by=11*pi/6)
par(mfcol=c(3,1))
plot(x,sin(x),t="l")
plot(x2,sin(x2),t="l")
plot(x3,sin(x3),t="l")

All three curves are similar to a sine function, but it
can be seen that under a wrong sampling frequency
neither the frequency nor the phase will be found.

Further parameters of the drawing window can be
searched in the list, got by the command par().

Further commands related to the drawing

The following commands do not open a new graphi-
cal environment (figure), just paste the informations
based on their parameters.

points points
abline a line with given parameters
lines broken line
segments line segments
arrows arrows
polygon given by its vertices
axis axes
title title
mtext text wrritten on the margins
legend legend
text writing of text

The next sequence of commands is a simple game
showing the use of the locator() routine:

x <- rnorm(9); y <- rnorm(9)
target <- cbind(x,y)
T1 <- "Very good (%.4f) !"
T2<-paste("More accurately and quicker",

"(%.4f) !!")
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par(mar=c(1,1,1,1))
plot(target,pch=49:58,col="red",

axes=FALSE,frame=TRUE)
title("Locate the 9 points!")
z <- Sys.time();
p <- locator(n=9,type="p")
arrows(x,y,p$x,p$y,length = .1)
span <- as.numeric( Sys.time()-z )
dpt <- sqrt(

sum((cbind(p$x,p$y)-target)^2))/span
dx <- sum((x-p$x)^2);
dy <- sum((y-p$y)^2);
s <- if(dx<dy) 1 else 4
sprintf(if(dpt<.02) T1 else T2, dpt)
mtext("This direction is worse!!!",s=s)

In the game three drawing functions were used:
title(), locator(), mtext().

locator(9,type = "p") # points
locator(9,type = "l") # connecting line
locator(9,type = "o") # line+points

In our case the locator() command draws a point
where the mouse-click indicates and then the acc-
urateness of the guess is calculated.

Several figures at once

It is the simplest way to use the command par() for
viewing more figures at the same time. By resetting
its mfrow (multi frame by row) parameter e.g. as
par(mfrow=c(2,3)), then we get a graphical win-
dow which is divided into 2 rows and 3 columns.

par(mfrow=c(2,3))
plot(runif(2),runif(2),
pch=19,cex=75,col=c("red","blue"))

Let us run the plot command several times! The
first figure is drawn into the upper left corner. The
next one continues the first row, then comes the
second row etc. If the last row is completed, then
it starts drawing into the first window of the first

row again. If we delete the graphical window, the
multi-window setup is deleted as well. We can chan-
ge back to the single-window mood by the command
par(mfcol=c(1,1)).

We may use another method for splitting the graphi-
cal window. The following code splits the graphical
window into 4 parts of equal size and plots the same
points into them, using different colours.

x<-rnorm(6);y<-rnorm(6)
split.screen(c(2, 2))
screen(1);plot(x,y,pch=19,col="red")
screen(2);plot(x,y,pch=19,col="blue")
screen(3);plot(x,y,pch=19,col="green")
screen(4);plot(x,y,pch=19,col="black")

split.screen can also be used for creating windows
of different sizes. If its parameter is a matrix ha-
ving 4 columns, then the rows give the places of
the corners for the sub-windows (left, right, lower,
upper), calculated as proportions, compared to the
whole window:

split.screen(matrix(c(0,.75,0,.75,
.25,1,.25,1),2,byrow=TRUE))

screen(1);plot(x,y,pch=19,col="red")
screen(2);plot(x,y,pch=19,col="blue")
close.screen(all = TRUE)

Here we have created two windows of size 3/4, which
overlap in the middle of the screen. The last com-
mand exits the split-screen mode.

If we want to draw more figures from a program,
then we may wish to achieve that the next figu-
re overwrites the previous one only after we let it
to be done (by pushing a key for example). The
getGraphicsEvent() command can be helpful in
these cases.

The command getGraphicsEvent() can be made
sensitive to three different events: the movement of
the mouse, the button of the mouse or a keyboard
button.
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:::::
1.2.d

::::::::::
Program

:::::::::::::
organisation

It is worth to organise such combination of com-
mands, which are often used into functions. We ha-
ve already seen examples for user-defined functions.
Its syntax is: ‘function(){}’, where the first set of
brackets include the arguments, the second the com-
mands. Let us see a simple example:

pelda<-function(x,y)
{a<-x+2;b<-y*2
return(list(a=a, b=b))}

(z<-pelda(3,4))
args(pelda)

Here the result is a list of two element. The first is
‘a’, having a value of 5, the second is ‘b’ which is 8.

Next we show two classical cycle-organising com-
mands:

repeat ... break
while(cond) expr

The break and the next option can be part of the
for cycles as well as the while cycles.

As we have seen, one may write several commands
into a single line, if they are separated by semicolon.
It is also possible to organize the commands into an
array, if we write them between curly brackets ‘{’
‘}’.

The for-cycle

The for-cycle consist of a control enclosed by brac-
kets ‘(’ ‘)’ and an array of commands enclosed by
curly brackets ‘{’ ‘}’. The result of the next run is
10! (factorial).

f<-1; for(i in 2:10) {f<-f*i} ; f

The for-cycle is relatively slow in R. But there are
other methods for arranging our cycles, so if possible
the long and nested for-cycles should be avoided.

If we want to see the earlier commands, we might get
them in a separate window by the history(m=99)
command. The needed parts then can be edited and
copied from this window.

The work is easier if we use the possibility that after
having typed the first characters of a command, we

push the ‘Tab’ button twice:
- if the extension is unanonymous, then the com-

mand is completed
- if there are more possible completions, then the

possible variants are printed.

If we intend to run a longer program several times,
then the best method is to type commands into an
ASCII file and call it from there by source("file
name") to the command window of Rgui. The
source() command can also be a part of another
script file.

We may call a function repeatedly without any
changes via the replicate() command. It has two
parameters: the second is the name of the called
function and the first is the number of repetitions.
Its result is a vector, containing the results of the
function call.

E.g. the command
replicate(100, mean(rexp(10)))

calls 100 times the average function for 10 random
numbers, having unit exponential distribution. Its
result is a 100-element vector.

Conditional commands

There are two ways to construct such commands
which are executed only in case of given conditions.

The command if (test) {yes} else {no} can be
applied in simpler cases. Here yes and no can be an
array of commands.

The command ifelse(test,yes,no) is slightly mo-
re complicated. In a typical case the three parame-
ters and the result is four vectors of the same length.
The system determines the result by row-wise eva-
luation of the three parameters The result in a row
will be equal to the yes or no expression, depending
on the value of the test in a given row.

The command switch() operates similarly to
ifelse() in case of a single parameter. The dif-
ference is that by the help of the switch() we may
choose not only from two, but an arbitrary number
of labelled function values.
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The functions, we can choose from are given as the
second, third, etc. labelled parameters of switch().
The question, which function will be evaluated is de-

cided by the first parameter. The system calls the
function, which has identical label to the value of the
first parameter.

:::::
1.2.e

::::::
Input

:::::
and

:::::::
output

:::
of

:::::
data

By the options() command we can list the basic
settings of our system. A more important one is
getOption(’digits’). It shows that the system
prints the numbers with seven digits. Its operation
is shown by the constants π and e:

options()$di# 7
pi# 3.141593
options(digits=19)
options()$di# 19
pi# 3.1415927 (it has just 18 digits)
(pi- 3.141592653589793)*10^17# as stored
exp(1)# e=2.718282
options(digits=7);pi

It was enough to write the first two characters of the
needed component of the options() list, as it gave a
unique prefix in this case. Unfortunately there is no
built-in constant e but it was substituted by exp(1).

Here are the special elements of the character strings:

\’ single quote
\" double quote
\n newline
\r carriage return
\t tab character
\b backspace
\a bell
\f form feed
\v vertical tab
\\ backslash itself
\nnn a character given by an octadecimal co-

de, the same for hexadecimal \xnn and for unicode

\unnnn or \Unnnnnnnn.

If we intend to print from the program, then it is
not enough to simply give the name of the variable,
as the following example shows.

If we type into the file rov of the worikng directory
by the following commands:

"Not seen!"
("This neither ...");x<-2;x;(x)
print(paste("abc","\n"))
print(paste("bcd","\n"))
cat(paste("def","\n","efg","\n"))
cat(paste("The first printed row...","\n",

"... the second!\n",sep=""))

and let it run by the following command:
source("fv.rov"), the result is the following:

> source("fv.rov")
[1] "abc \n"
[1] "bcd \n"
def
efg

The first printed row...
... the second!
>

Note that the command print() prints the infor-
mations, but the editing commands are not used.
The command cat() produces output as expected.

Handling external data

R can work with different input formats and can
provide results in several formats by the help of its
packages. The direct input and output of the most
famous statistical software packages is ensured by
the package foreign, which belongs to the basic
program. Examples: read.spss, write.spss. Se-

veral similar functions are available, like .S, .dta,
.octave, .mtp and .systat.

We present now the three most frequent in-
put/output procedures.
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The first is the most effective, the own data format
of R. The second is the least effective, but which
is the easiest to control: the input-output in ASCII
format.

The own data format of R

One can save data by the save() command, and
load data by the load() command. In the save()
command first we have to list those variables (se-
parated by comma) which we intend to save, then
the file="..." parameter has to specify the file
(including its directory) where we want the data to
be saved.

The load() command is simpler. Here only the
name of the file has to be given, and there are
practically no further parmetrizations possible. This
means that we cannot control that the variables to be
loaded should not overwrite existing contents. Not
having better options, we may utilize the feature of
R that it is possible to run several of its copies conc-
urrently and load the suspicious file to an "empty"
copy of R and there we can check its content.

ASCII data

It is typically used for input and output data.frame
variables:

A<-data.frame(e=c(1,3,2),m=2:4,
row.names=c("A","B","C"))

write.table(A,"C:/TMP/data.csv",sep=’,’)
D<-read.table("C:/TMP/data.csv",

header=TRUE,sep = ",")

edit(D)
labels(D)

The most important options:
header = TRUE
sep = "," separating character between columns
dec="." the decimal point of the numbers
quote=TRUE quotation mark around strings
stringsAsFactors=TRUE should those columns,

where there are characters, converted to factors?
It may cause unpleasant results that the default va-
lue here is TRUE while quite commonly we may get
better results by FALSE.

The next sequence of commands show, how can we
convert a variable having type factor to a variable
of character type. The commands in between show,
why is the task not obvious.

f<-as.factor(c("one","two","one","three",
"six","four","six"))

f;class(f)
as.numeric(f)
unclass(f)
levels(f)[as.numeric(f)]

The last one is the command, suitable for converting.

Handling EXCEL files

There is a purposely written package xlsx, which
allows the user to read EXCEL files. Here we also
have to specify, which sheet has to be read, by the
sheetIndex or sheetName parameters.

A possible command for writing an EXCEL file:
write.xlsx(df,"df.xlsx",sheetName="DFrame")
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II. Descriptive statistics

In this part we present some simple methods, useful as a first step in data analysis. Here we use our own
data, so not only the scripts, but the results are shown as well.

2.1. Getting acquainted with the data 17.
2.2. Graphics 18.
2.3. Graphical tools for checking normality 25.
2.4. Checking bivariate dependence 29.

2.1. Getting acquainted with the data

Introduction

The first step is the input of our data. First we use
our own data about the students, which was recor-
ded at a statistics course.

diak <-
read.table("D:\\oktatas

\\diakok.txt",header<-T)

It contains 47 rows (observations) and 8 variables:

maths (the mathematics note from last semester)
law (the law note from last semester)
beer (the number of bottles drank last week)
residence
height (in cm)
shoe size (European)
age (year)
gender

Of course such self-declared data is not always very
reliable, but for our purposes it is just perfect. First
let us overview the most important characteristics of
the data:

summary(diak)

The results:

Maths Law
Min. :1.000 Min. :2.000
1st Qu.:1.000 1st Qu.:3.000
Median :2.000 Median :3.000
Mean :1.957 Mean :3.404
3rd Qu.:2.000 3rd Qu.:4.000
Max. :5.000 Max. :5.000

Beer Residence
Min. : 0.000 Budapest :16
1st Qu.: 0.000 Pilisvörösvár: 5
Median : 0.000 Miskolc : 3
Mean : 4.213 Baja : 1
3rd Qu.: 1.500 Bajót : 1
Max. :115.000 Békés : 1

(Other) :20

Height Shoe size
Min. :152.0 Min. :36.00
1st Qu.:165.0 1st Qu.:38.00
Median :170.0 Median :39.00
Mean :171.8 Mean :39.64
3rd Qu.:177.5 3rd Qu.:41.00
Max. :188.0 Max. :46.00

Age Gender
Min. :18.00 F:35
1st Qu.:19.00 M:12
Median :19.00
Mean :19.45
3rd Qu.:20.00
Max. :22.00
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The notes provide little surprise: maths seems to
be much more difficult than law (note that 1 is the
worst note - it is a fail - and 5 is the best). Actually,
nobody has failed from this subject. The average
note from maths is 1.96, while of those from law is
3.4. For beer drinking, the 115 being its maximum
value is very surprising. After checking the original
questionnaires, it turned out that the error was not
in the typesetting (this should always be the first
step, seeing such suspicious data). Such so called
outliers - as we shall see later - have substantial
effect on the results of the data analysis. We have
several options for treating such problems: we may
omit the most suspicious values, which in this case
looks as the joke of one of the students. Or we may
think that while the value itself is most likely exag-
gerated, it is probably not recorded by an abstinent,
so we leave it in the data and choose such methods
that are not sensitive to these values (they are called
robust methods). The mean is heavily influenced by
this value, as it became 4.2 (while when omitting
this single outlier, it reduces to 1.8). The median is
just 0, showing that more than half of the students
have not drunk any beer in the given period. This

is an excellent example for robust statistics.

Residence is not a numeric variable, its results are
character strings, so here we cannot calculate the
shown descriptives, only the frequencies can be cal-
culated.

There is also a suspicious value among the height
data: for an adult the height of 88 cm is hardly a
real value. The control has shown that here a type-
setting error has occurred, so we have worked in the
sequel with the correct value of 188 cm.

The values of variable ”age” seem to be realistic.
Gender is again a qualitative variable, which is
special, as it has only two values: F=female, and
M==male. This allows us, that in certain cases, when
the method is not sensitive to the linear transforma-
tion, we may consider it as a binary variable in the
analysis. We shall come back to this point in the
section about linear regression. It is worth noting
that among the 47 elements in the sample, there
were only 12 men.

2.2. Graphics

The best method for visualising univariate distributions is the histogram.
This is what the next code produces.

par(mfrow=c(2,2))

hist(diak[,1],xlab="note",
ylab="frequencies",main="Maths")

hist(diak[,2],xlab="note",

ylab="frequencies",main="Law")
hist(diak[,5],xlab="cm",

ylab="frequencies",main="Height")
hist(diak[,6],xlab="",

ylab="frequencies",main="Shoe size")

———
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———

Seeing the results we immediately face the problem
that for discrete variables the automatic division of
the real line into intervals, produced by R is by far
not ideal. It is especially problematic at the varia-

ble "notes", as one cannot decide, where belong the
values, which coincide with the endpoints of the in-
tervals. So after the failure of this first try it is worth
setting the limits manually, as follows.

par(mfrow=c(2,2))

u1 <- hist(diak[,1],breaks=1:6-.5,
xlab="note",
ylab="frequencies",
main="Maths")

hist(diak[,2],breaks=1:6-.5,
xlab="note",
ylab="frequencies",
main="Law")

hist(diak[,5],breaks=5*1:10+142.5,
xlab="cm",
ylab="frequencies",
main="Height")

hist(diak[,6],breaks=c(1:12)+69/2,
xlab="",
ylab="frequencies",
main="Shoe size")

———

MMXVI 19



Electronic lecture note//Statistical Problem Solving in R//Prőhle Tamás + Zempléni András

———

The integers fall here into the middle of the intervals,
providing an excellent comparison of the maths and
law notes. The histograms show, that especially the
maths notes and the shoe sizes have a skewed dist-
ribution. The formula for the theoretical skewness
is E((X − EX)3)/D3(X),which corresponds to the
empirical version: ∑

(xi − x)3/n

(
∑

(xi − x)2/n)3/2
.

Interestingly, this function is not to be found in the
basic R package, one has to load the additional lib-
rary moments.

> skewness(diak$Maths)
[1] 1.166492
> skewness(diak$Law)
[1] 0.046062
>

The difference can be spotted immediately: the value
near to 0 for the law-notes means an almost perfect
symmetry, visible on the previous figure.

> skewness(diak$Shoe)

[1] 0.6532392
> skewness(diak$Height)
[1] 0.2382522
>

There is a difference here, but by far not as substan-
tial: both distributions are slightly skewed. Based
on this observation we may expect that in all fo-
ur cases the median will be larger than the mean.
But this is not the case as for discrete distributions
(especially for those, which have just a few possib-
le values, the median can just follow the changes in
distribution with big jumps only (as by its original
definition the median is always a real observed va-
lue - or possibly the average of these). If needed, it
is possible to use a correction formula, suitable for
classified observations:

m∗ = xl + d
n/2− fl

f
(1)

where m∗ is the corrected median, xl is the lower
bound of the class of the median, d is the width of
this class, n the total number of observations, fl the
cumulated frequency, f the frequency of the class of
the median. For example for the maths notes, from
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the u1 object, which we have got from the last his-
togram:

> u1$counts
[1] 20 16 6 3 2

In our example this means that we suppose for the
notes that they are in fact rounded values - uni-
formly distributed in the possible region: this means
that a 2 falls between i.5 and 2.5 so in the formula
(1) d = 1 and xl = 1.5. n = 47, fl = 20, f = 16, so
m∗ = 1.72, which is in accordance with the property
that for positively skewed distributions the median
is smaller than the expected value.

Finally, the kurtosis is also suitable for checking the
normality (for unimodal, symmetric distributions).
Its formula is E((X − EX)4)/D4(X), which can be
estimated as ∑

(xi − x)4/n

(
∑

(xi − x)2/n)2
.

Its value for the normal distribution is 3. If we get
a larger value, then the distribution is peaked (lep-
tokurtic), otherwise it has a more rounded peak.

> kurtosis(diak$Shoe)
[1] 2.57627
> kurtosis(diak$Height)
[1] 2.20524
>

For both cases, the kurtosis is slightly smaller than
that of the normal distribution.

If we want to add a hypothesized or fitted distri-
bution to the histogram, then it is needed that we

plot the relative frequencies instead of frequencies,
ensuring that the total area of the rectangles equal
one. Thus the values are comparable to the density
function. We shall come back to this possibility at
the goodness of fit procedures.

Another informative figure is the empirical distribu-
tion function, which has the advantage, that there is
no need for binning, like in the case of histograms.
In order to get it, we first have to construct the em-
pirical distribution function object, and then it can
be plotted, as it is indicated in the next code.

par(mfrow=c(2,2))

e1 <- ecdf(diak[,1])
plot(e1,xlab="note",

ylab="relative frequency",
main="Maths")

e2 <- ecdf(diak[,2])
plot(e2,xlab="note",

ylab="relative frequency",
main="Law")

e3 <- ecdf(diak[,5])
plot(e3,xlab="cm",

ylab="relative frequency",
main="Height")

e4 <- ecdf(diak[,6])
plot(e4,xlab="",

ylab="relative frequency",
main="Shoe size")

———
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We come back to this figure later as well, in the sec-
tion about goodness-of-fit.
If we have a qualitative variable, then we can draw
a simple bar chart instead of the histogram.
The next sequence of commands produce this diag-
ram for variable gender, first for all observations,
then separately for each maths note. The legend is
generated automatically, if we provide its text.

par(mfrow=c(1,2))
no <- sum(diak[,8]=="F")
ffi <- sum(diak[,8]=="M")

nomat <-
c(sum(diak[,8]=="F" & diak[,1]==1),
sum(diak[,8]=="F" & diak[,1]==2),
sum(diak[,8]=="F" & diak[,1]==3),

sum(diak[,8]=="F" & diak[,1]==4),
sum(diak[,8]=="F" & diak[,1]==5))

ffmat <-
c(sum(diak[,8]=="M"&diak[,1]==1),
sum(diak[,8]=="M"&diak[,1]==2),
sum(diak[,8]=="M"&diak[,1]==3),
sum(diak[,8]=="M"&diak[,1]==4),
sum(diak[,8]=="M"&diak[,1]==5))

barplot(c(no,ffi),main="Gender",
names.arg=c("Female","Male"))

barplot(cbind(nomat,ffmat),
names.arg=c("Female","Male"),
col=c(1:5),main="Maths note",

legend.text=as.character(c(1:5)))
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The results show that the best two notes (4 and 5)
were to be found only among the female students and
that the proprtion of failiure (note 1) is also much
higher for males than for females.

It can also be shown by a pie chart:

par(mfrow=c(1,2))
pie(nomat,radius=1,col=c(1:5),

main="Maths note for females")
pie(ffmat[1:3],radius=sqrt(ffi/no),

main="Maths note for males",
col=c(1:5))

———

———

Let us observe that the ratio of the radii is the squ-
are root of the ratio of the sample sizes, so the plot

is area-proportional. The 0 frequencies had to be
removed in order to omit their labels. However, it
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is worth noting that the researchers argue that the
average reader cannot determine the relation bet-
ween the arcs, so the use of the bar chart is much
more recommended.
Now let us switch to another data set, which gives
an insight to real research problems. The time series
of daily water level measurements of the Danube at
Budapest and Mohács will be investigated. In or-
der to avoid problems caused by missing data, we
deal with the period between January 1, 1946 and
December 1, 2009 as earlier (especially during the
world wars) there were months with completely mis-
sing observations.

bud <- read.table("D:\\oktatas
\\BudapestNapi.lst")

moh <- read.table("D:\\oktatas

\\MohacsNapi.lst")
bud <- bud[bud[,1]>1945,]
moh <- moh[moh[,1]>1945,]
bud <- bud[,4]
moh <- moh[,4]

If we utilize that the observations come from neigh-
bouring days (i.e. we have a time series data) and
plot the data as a function of time, we get the next
figure, which is not too informative.

par(mfrow=c(1,2))
plot(bud,type="l",xlab="",

ylab="cm",main="Budapest")
plot(moh,type="l",xlab="",

ylab="cm",main="Mohács")

———

———

The problem is caused by the too many data points.
Besides the extremely high or extraordinary law va-
lues not many details can be identified. It is much
more interesting to investigate the annual cycle of
the water levels. Simply the daily averages can be
used for this purpose. As we have previously omit-
ted the leap days from the data, these can easily be
computed, as follows.

par(mfrow=c(1,2))
r <- c(0:63)

budev <- bud[1:365]; mohev <- budev

for (i in 1:365)
{budev[i]=mean(bud[r*365+i]);
mohev[i]=mean(moh[r*365+i])}

summary(budev)
summary(mohev)

plot(budev,type="l",
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xlab="day of the year",
ylab="cm",main="Budapest")

plot(mohev,type="l",
xlab="day of the year",
ylab="cm",main="Mohács")

———

———

Here all the details can be easily verified. The long
lasting sequence of higher values from mid-spring is
true for both stations. Other patterns are also very
similar. The data from Mohács are not only larger,

(this is mainly due to the specific location of the
water gauge) but exhibit larger variance.

2.3. Graphical tools for checking normality

While investigating the distribution of our data, qu-
ite often the question of normality arises. We shall
come back to this important issue in Section 3, whe-
re we use the tools of the mathematical statistics.
But now we check this assumption by simple diag-
rams.

The histogram itself is a self-explaining figure of the
distribution, but the choice of the classes may cause
substantial effects on the results. There are more
objective methods for the same purpose. First we

present the so-called QQ-plot. Here we plot the fol-
lowing points: (

Φ−1

(
i

n+ 1

)
, x

(n)
i

)
i.e. we compare the quantiles of the assumed dist-
ribution with the empirical quantiles. As the nor-
mal distribution is a location-scale family, there is
no need for parameter estimation here. If the samp-
le follows a normal distribution, then the points of
the diagram should be near to the line, which goes
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through the point (0, x̄) and having steepness equ-
al to the standard deviation sd(x). It is common
to show this line on the diagram, together with the
points. The disadvantage of this method is that in
its simple form it does not give information on the
significance: what deviations can still be considered
as random. To make the evaluation easier one may
present a QQ-plot, which belongs to a simulated nor-
mal sample of the same size as our data.

par(mfrow=c(2,2))

xlab <- paste("Quantiles of the",
"std. normal distribution")

qqnorm(diak[,2],main="Law",
xlab=xlab,
ylab="Quantiles of the sample")

qqnorm(diak[,3],main="Beer",
xlab=xlab,
ylab="Quantiles of the sample")

qqnorm(diak[,5],main="Height",
xlab=xlab,
ylab="Quantiles of the sample")

qqnorm(diak[,6],main="Shoe size",
xlab=xlab,
ylab="Quantiles of the sample")

———

———
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For the beer consumption the outlier destroys the
fit completely (which is of course not good anyway,
due to the skewness of the distribution). For the ot-
herwise symmetric law-notes, the observations have
only four distinct values, this makes the normality
hopeless. In case of shoe size the relatively frequent
small values look unusual in the case of a normal
distribution. Body height is often modelled by nor-
mal distribution, but our data do not support this
assumption. Of course, such small data sets quite of-
ten produce unusual behaviour. About the question,
what difference is still typical, one may get informa-
tion by simulations.
This is shown in the next figure, where the left pa-
nels show simulated data from normal distribution,
while on the right panel there is the real data. The
first row shows the annual average water levels, while
the second gives the daily logreturns, based on clo-
sing values of the Dow Jones stock index data from
the New York stock exchange, which can be freely
downloaded from the webpage of the Yahoo. Here
we used the daily log-returns log(Xt+1−log(Xt), bas-
ed on the daily closing values Xt. In order to avoid
the problems with large data sets, here we just show
the results for the data from 2005 till 2010.

par(mfrow=c(2,2))

xlab <- paste("Quantiles of the",
"std. normal distribution")

ylab <- "Quantiles of the normal data"

r <- c(1:365)
budev2 <- bud[1:64]; mohev2=budev2

for (i in 1:64)
{budev2[i] <- mean(bud[r+365*(i-1)]);
mohev[i] <- mean(moh[r+365*(i-1)])}

y <- rnorm(64,mean(budev2),sd(budev2))

qqnorm(y,
main="Simulated data",
xlab=xlab,
ylab=ylab)

qqline(y,col=4)

qqnorm(budev2,
main=
"Average water level of the Danube",
xlab=xlab,
ylab="Quantiles of the sample")

qqline(budev2,col=4)

dj <- read.table("D:\\oktatas\\aring
\\nasdaq_djia_2005_2010.txt")

djl <- dj[,1]
y <- rnorm(length(djl),mean(djl),sd(djl))

qqnorm(y,main="Simulated data",
xlab=xlab,
ylab=ylab)

qqline(y,col=4)

qqnorm(djl,main="Dow Jones logreturns",
xlab=xlab,
ylab="Quantiles of the sample")

qqline(djl,col=4)

———
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———

It can be seen, that while the average water level
is near to the normal distribution (its theoretical
background is the central limit theorem), the logre-
turns are far from being normal. This fact caused
(and still causes) a lots of problems for those dealing
with financial data.

Besides the QQ-plot diagram the PP-plot is also qu-
ite often used. Here the empirical distribution func-
tion of the sample is compared to the normal distri-
bution function’s value at the sample points. If the
fit is good, these points lie near to a line.

par(mfrow=c(2,2))

y <- rnorm(64,mean(budev2),sd(budev2))
ylab <- paste("Values of the normal",

"distribution function")
xlab<-"p-values"

plot(c(1:length(y))/(length(y+1)),
pnorm(sort(y),

mean(budev2),sd(budev2)),
main="Simulated data",
xlab=xlab, ylab=ylab)

abline(0,1,col=4)

plot(c(1:length(y))/(length(y+1)),
pnorm(sort(budev2),

mean(budev2),sd(budev2)),
main=
"Average water level of the Danube",
xlab=xlab, ylab=ylab)

abline(0,1,col=4)

y <- rnorm(length(djl),mean(djl),sd(djl))
plot(c(1:length(y))/(length(y+1)),

pnorm(sort(y),
mean(djl),sd(djl)),
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main="Simulated data",
xlab=xlab, ylab=ylab)

abline(0,1,col=4)

plot(c(1:length(y))/(length(y+1)),

pnorm(sort(djl),
mean(djl),sd(djl)),

main="Dow Jones logreturns",
xlab="xlab, ylab=ylab)

abline(0,1,col=4)

———

2.4. Checking bivariate dependence

The most natural first step is the pairwise plot of the
variables. In order to keep the figures readable, we
just consider the last four variables of our student

data in the next simple command:

par(mfrow=c(1,1))
plot(diak[,5:8])

———
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———

First we see from the plot that the categorical va-
riables are coded by R, so they can also be plotted
in the coordinates. There is a quite natural strong
relationship between the height, the shoe size and
the gender. Age looks as being independent from all
other variables. We shall come back to these quest-
ions in the section, dealing with independence tests.

There is however, a tool worth considering in R. To
apply this, let us investigate the shoe size data. On a
simple plot we cannot check exactly how many times
have the different values occurred. We see that each
size from 36 to 42 has occurred at least once, but we
cannot evaluate the frequencies for the females for
example. We can present these on our plot if we use
not the original values but their perturbed versions

on the diagram. And this is not a problem if we
consider the original meaning of the shoe sizes, since
the observed integer values are rounded versions of
a continuous variable (the size of the foot).

par(mfrow=c(1,2))
cipj<-jitter(diak[,6],factor=1.3)
plot(as.numeric(diak[,8]),cipj,

xlab="Females Males",
ylab="shoe size",
main="The shoe sizes ",axes=F)

axis(2);axis(4)
hist(diak[,6],

xlab="",ylab="frequencies",
main="Shoe size",
breaks=c(1:12)+69/2)

rug(cipj)

———
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———

Let us investigate some important points of the
code! Jitter adds random perturbations to the ob-
servations. In order to keep the consistence of the
figures, we have saved the perturbed values before
adding in to the plot. In the first figure we had to
convert the values of gender to numbers, otherwise
we would have got a simple boxplot. This conversion
would have resulted in strange decimals on the axes,
which were first omitted, then redrawn to the two
sides of the plot. The new feature of the second plot
is the ”rug’ below the x axis, which now shows the
perturbed values.

The dependence on a dichotomous variables or on
categorical variables with at most a few values is
best shown by a boxplot, as follows.

par(mfrow=c(2,2))
v<-list()

v$"male"<-diak[diak[,8]=="M",1]
v$"female"<-diak[diak[,8]=="F",1]
boxplot(v, main="Maths")

v<-list()
v$"male"<-diak[diak[,8]=="M",2]
v$"female"<-diak[diak[,8]=="F",2]
boxplot(v, main="Law")

v<-list()
v$"male"<-diak[diak[,8]=="M",5]
v$"female"<-diak[diak[,8]=="F",5]
boxplot(v, main="Height")

v<-list()
v$"male"<-diak[diak[,8]=="M",6]
v$"female"<-diak[diak[,8]=="F",6]
boxplot(v, main="Shoe size")

———
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These diagrams show the dependence on gender for
four variables. On this diagram the median is shown
by the thick black line, the box shows the range
between the quartiles, the whiskers range from the
minimum till the maximum, if its length is not larger
than 1.5-times the difference between the quantiles –
in this default case. If the range of the data is larger,
the outliers are represented by individual circles (as
in case of females’ maths notes: 4 and 5 seem to be
outliers in this sense).

The results show that the women have better results,
but they have smaller height and shoe sizes. This
gives an answer for the seemingly unusual behaviour
of the correlation matrix.

It is worth noting that for the default 8 digits we
just use 3, which is enough in most of the cases and
enormously improves the readability of the table.

> round(cor(diak[,c(c(1:3),c(5:7))]),3)

Maths Law Beer Height Shoe Age
Maths 1.000 0.52 -0.16 -0.117 -0.207 0.055
Law 0.516 1.00 -0.22 -0.209 -0.362 0.232
Beer -0.156 -0.22 1.00 0.285 0.371 0.007
Height -0.117 -0.21 0.28 1.000 0.790 -0.175
Shoe -0.207 -0.36 0.37 0.790 1.000 -0.234
Age 0.055 0.23 0.01 -0.175 -0.234 1.000
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For the analysis of the flood data another important
direction is the investigation of the extremes. This
can easiest be done by the investigation of the an-
nual maxima. These values are are calculated and
plotted by the following commands.

par(mfrow=c(1,2))
r <- c(1:64)
ev <- 1945
nap <- c(1:365)
budmax <- bud[1:64];
mohmax<-budmax

for (i in 1:64)
{budmax[i] <- max(bud[(i-1)*365+nap])

mohmax[i] <- max(moh[(i-1)*365+nap])}

summary (budmax)
summary(mohmax)

plot(ev,budmax,type="l",xlab="year",
ylab="cm",main="Budapest")

plot(budmax,mohmax,xlab="Budapest",
ylab="Mohács",main="Annual maximuma")

points(budmax[5],mohmax[5],col=2,pch=10)

———
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On the first panel we just show the data from Bu-
dapest. It is an important statistical question if the
visible upward trend is significant or may just be a
random effect. Another question is - based on the
plot on the second pane, where the scatterplot of the

annual maxima is shown - whether one of the data
from year 1950 (marked red) may be erroneous, as
the difference between the two sites is much larger
than for any other years.
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Hypothesis testing with the help of the R programming environment
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3.1. Hypothesis testing

Hypothesis testing is one of the most typical methods in statistics beside parameter estimation and model
building. In case of the hypothesis testing we decide – based on our sample – if the H0 hypothesis can be
accepted for the distribution of our observations. Our assumption is that one of the disjoint hypotheses H0
and H1 is true for the distribution of our sample elements.

As hypothesis testing is based on random samples,
it may be erroneous. It may happen that we reject
that a sample from H0 is actually from H0 and it
may accept a random sample coming from H1 as one
belonging to H0. An erroneous decision of the hy-
pothesis test is called an error of type I - or type II,
depending on whether the true distribution of the
sample belongs to H0 or to H1, as follows:

- An error is of first type/type I , if the sample is
from H0 and the hypothesis test rejects the H0;

- An error is of second type/type II, if the sample
is from H1 and the hypothesis test accepts the H0.

It can easily be seen that based on random samples
one cannot make surely correct decisions even hav-
ing arbitrarily many observations – except of very
unusual cases.
But it is also true that under wide circumstances
there is a procedure, which ensures that it has the
minimal probability of type II error, given the pro-
bability of type I error. We shall call these methods
optimal.

The classical definition of a hypothesis test is by the
help of a critical region (meaning that H0 is rejected

if the observations fall into this region), which is
level α if it has probability at most α under the dis-
tributions belonging to H0, and it is optimal if it has
maximal probability under every distribution in H1
among the level α sets (we give formal definitions in
the next paragraphs). It is important to note, that
α is usually small (at most 0.05), so the rejection of
the H0 is informative in the sense, that it is erroneous
only with a probability not larger than α. On the
other hand if we accept H0 it is not as informative,
as it tells us only the ’lack of evidence for rejection’
– which is a much weaker statement than the proof
of H0.

Let us have X1(ω) = x1, ... , Xn(ω) = xn observed
values from the (X1, ..., Xn) random vector. We may
construct our method based on an n-variate d() func-
tion (test statistic) which has a univariate image:
d(x1, ..., xn) ∈ R. We intend to find a critical region
K ⊂ R, for which the probability

P (d(X1, ..., Xn) ∈ K)

is small (<= α) if the distribution of the observed X
variables lies in H0, and it is large if this distribution
is in H1.
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Let Kα be the set of such K ⊂ R sets, for which if
X has a distribution in H0, then P (X ∈ K ≤ α). A
critical region K ∈ Kα is called optimal if there is no
K ′ ∈ Kα for which P (X ∈ K) ≤ P (X ∈ K ′) would
hold under a distribution in H1.

We shall deal with hypothesis pairs (H0, H1) and test
statistic d() for which the distribution of the statistic
d(X1, ..., Xn) is known for distributions in H0. Let
us denote the distribution function for the element
in H0, which is nearest to H1 by G0.

For the hypothesis pairs and statistics under in-
vestigation it will also be true that the optimal K
(or at least the critical region we shall apply) will be
either a half-line or the union of half lines (i.e. the
complement of a finite section).

If we look for the critical region in the form of a
half-line, then it can only be the [G−1

0 (1 − α),∞)
or the (−∞, G−1

0 (1 − α)] as these are the half-lines
which have probability α under the distribution G0.

The situation is not as unanimous if we want to get
the critical region as the union of two half-lines. In
this case we usually choose a symmetric one, where
both of the half-lines have probability α/2, i.e. we
get the set

K = (−∞, G−1
0 (α/2)] + [G−1

0 (1− α/2),∞).

This K is however, usually not optimal with respect
to the definition above.

We can see that in the above-mentioned ’simple’ cas-
es to decide if the statistic is in the critical region,
it is enough to give the quantiles of the distribution
function G0(x). When we compare the actual value
of the statistic to the appropriate one from G−1

0 (α),
G−1

0 (1−α), G−1
0 (α/2) or G−1

0 (1−α/2), then we can
decide if the statistic lies within the critical region.

If we use the computer for hypothesis testing – in the
classical case, in accordance to the above-mentioned
procedure – the computer expects two information
from us: the data and the level α. As before, α de-
notes the maximal probability of the error of type I.

On the other hand, the program quite often does not
tell us the decision about H0, just gives two numbers:
the value of the statistic and the α- (or other, rela-
ted) quantile of the distribution of our test statistic

under H0. In the case, when the critical region is a
(possibly infinite) interval or its complement, then
this is just enough to the decision: first we create
the critical region and then compare the value of the
statistic to the quantile and either accept or reject H0.

One can see, that there is a step left in this classical
procedure, which can possibly be automatized: the
comparison of d and the gα quantile. This step is
simplified by the p-value.

Here we use the well-known fact that if we substitu-
te a random quantity to its own distribution func-
tion, then we get a number with U([0, 1]) (uni-
form) distribution. This means that under H0,
G0(d(X1, ..., Xn)) ∼ U([0, 1]). This can be interp-
reted as

p− value = G0(d),

i.e. the value of the test statistic, substituted in-
to the a distribution function of the test statistic
under the null hypothesis. This means that it is a
number, which has U([0, 1]) distribution, if H0 is true.

The p-value is enough on its own to decide the hy-
pothesis for any level α! Based on the fact that
under H0 the p-value is uniformly distributed over
the interval a [0, 1], it is enough to find the subinter-
val of length α within [0, 1], into which the p-value
typically falls if H1 is true. This is obviously a set in-
to which the statistic falls with probability α if H0 is
true. So we have got a critical region with first type
error probability α and with minimal probability of
the type II error.

As the p-value is a monotonic transformation of the
d statistic, if the critical region for d is based on
half-lines, then the critical region for the p-value
will coincide with the ends of the [0, 1]: either [0, α],
[1− α, 1] or [0, α/2] + [1− α/2, 1].

This implies that typically the small and the large
p-values form the critical region. Thus, based on the
p-value, for the decision about the acceptance of H0
it has to be checked that the p-value is neither too
small nor too large.

However, quite often the program uses the specific
information on the hypotheses and transforms the
statistic so that only the small p-values form the
critical region. Anyway, it means that to the decisi-
on we do not need the quantiles and the test statistic.
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The p-value of a statistic can be understood as the
probability that we get a statistic value larger or
equal the given one, based on another similar ran-
dom sample from the H0.

There are misunderstandings about the meaning of
the p-value. Some interpret the small p-value as ’the
probability of the H0 is small under the given samp-
le’. But this interpretation is completely erroneous.
It is true that we base our decision on a probability,
but this is not the probability of H0, but the pro-
bability of getting an even more extreme statistic
compared to the one we actually got. The question
about the probability of H0 is not even meaningful
in our methodology, as we have not defined proba-
bilities over the hypotheses!

Mathematically the p-value is just a similar statis-
tic as the u, t or F which we shall introduce next.

The only difference is that we have transformed the
statistic on a way, that its distribution is uniform
under H0. Such a statistic is more comfortable than
a usual u, t or F etc. statistic, as the critical set
to a given p-value can directly be got based on the
desired level. We just have to consider, which are
the typical values of the p-value under H1, and these
should be covered by an interval of length α.

In the next part we present several such hypothe-
sis tests, for which the usual test statistic follow a
normal, t or F distribution under the hypothesis H0.
In the classical approach these distributions looked
so important, that quite often the methods have got
their names from the given distribution. In case of
the approach with the p-value, the problem is simpli-
fied to a statistic having uniform distribution. Even
so, the tests have kept the names based on their tra-
ditional test statistic.

3.2. Hypothesis tests for the mean and the variance

In the next we show how to investigate hypotheses about the unknown mean and variance of the sample,
with the help of the program R.

The u-test is a typical introductory example in the statistics literature. Not because of its frequent applica-
tions, but because its properties can be treated easily and on an exact manner. The u-test can be applied
in cases, when we have either a large sample, or we can suppose that the individual observations have a
normal distribution with a known variance σ2. In case of the u-test under the above conditions, we must
decide whether the expected value of the observations is equal to a given value m (H0 hypothesis) – taking
into consideration the H1 hypothesis as well. Here we use the fact that if we have n observations and their
average is x̄, then supposing that the expected value of our observations is indeed m, then the statistic
u = (x̄ − m)/(σ/

√
n) has standard normal distribution. However, the needed condition of the ’known

variance’ is very strong and is rarely true. If we replace σ2 in the formula with one of its estimators, based
on our sample like s2 =

∑n
j=1(xj − x̄)2/(n − 1), the corrected empirical variance, then the distribution

of d = (x̄−m)/(s/
√
n) is not standard normal, but the tn−1 distribution, which is substantially different

from the normal in case of n < 20.

In the sequel we deal with hypothesis tests for the mean and the variance, as follows:

3.2.a) u-test 38.
3.2.b) F -test 41.
3.2.c) t-test 43.

a) There is no function in the base system of R,
which can perform the u-test. So if we want to
apply it, we have to program it.

We introduce in some detail, how can the u-test be

performed, when having a sample with known vari-
ance and if we may suppose that either the sample
is large enough, or we can suppose for the different
hypotheses that the individual observations have a
normal distribution.
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b) As a second example we show, how can we test
by the classical F -test the equality of the unknown
variances of the two samples. This problem can be
solved by the command stats::var.test().

c) The t-test is applicable for comparing the mean
values under less strict conditions than it was needed
in case of the u-test, as here we do not need to know
the variances. For different versions of the t-test we
shall apply the command stats::t.test().

This function has to be parametrized in case of the
typical problems as follows:
- in case of the one-sample t-test:
t.test(x,mu = m);

- in case of the two-sample t-test with equal vari-

ances:
t.test(x,y,var.equal = TRUE);

- in case of the two-sample t-test with different
variances:

t.test(x,y,var.equal = FALSE);
- for the paired-sample t-test:
t.test(x,y,paired = TRUE).

The type of the alternative hypothesis H1 can
always be given with the same parameter
alternative, which has the following possible va-
lues: "two.sided", "less", "greater".

The 1− α coverage probability of the confidence in-
tervals can be set by the parameter conf.level,
which has a default value of 0.95.

:::::
3.2.a

:::::
The

:::::::
u-test:

:::::::::
equality

:::
of

::::
the

::::::
mean

:::
in

:::::
case

:::
of

:::::::
known

:::::::::
variance

That test may be called u-test, where based on the
data we can calculate a real number, which has
standard normal distribution if the null hypothesis
is true.

The u-test is usually applied in the case if we have
normally distributed observations. As we usually
consider a linear transformation (when calculating
the standardized version) it is also needed that the
standard deviation (or equivalently the variance)
should be known – or at least that we can suppose
it to be known.

We investigate two problems, which may be solved
by the u-test:

- i) In the first case the question is if it is true
that the expected value of the observations equals
to a given m. This is the classical u-test.

- ii) In the second case the question is if the ex-
pectations of two groups of observations are equal.
This is the so-called u-test for two samples.

::
i)

::::
The

:::::::::
classical

:::::::
u-test

Let the independent (x1, ..., xn) observations come
from a normal distribution N (µ, σ) and let their
average be x̄. This implies that the

d =

∑n
j=1 xj/n− µ
σ/
√
n

=
x̄− µ
σ/
√
n

statistic follows the standard normal distribution.

Exercise. Let us suppose that the weight of 12 packs
of wood were the following (in kilograms):

9.8, 9.7, 10.1, 10.4, 9.5, 10, 9.9, 10.1, 10, 10.1, 9.8, 9.9

Can it be accepted that the expected weight of the
packs is 10 kg, if we suppose that the filling weight
of the packs is independent and normally distributed
with a standard deviation of σ = 0.1 kg?

Solution. Let us perform the test at the level of 5%.
The average of the observed values is x̄ = 9.94 kg.
The standard deviation of the average is 0.1/

√
12 ≈

0.0289 by the assumptions. Thus if the expected va-
lue of the weights of the packs is indeed 10 kg, then
the statistic d ≈ (9.94 − 10)/0.0289 ≈ −2.02 is the
observed value of a standard normal distribution.
As the standard normal distribution falls with 95%
probability into the ±1.96 interval, and the value
of d falls into the (−∞,−1.96) + (1.96,∞) critical
region, which has a probability of 5%, we have to
reject at the level of 5% that the the expected weight
of the packs is 10 kg.

We can do the same with the help of an R script as
follows. Let the variable z contain the 12 observa-
tions. We must decide between the following pair of
hypotheses, at the level of 5%:

H0: the expected weight of the packs is 10 kg
H1: the expected weight of the packs is 6= 10 kg

The program:
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z<-c(9.8, 9.7,9.9,10.4,9.5,10,
9.9,10.1,10 ,10.1,9.8,10.1)
s<-.1;m<-10
d<-(mean(z)-m)/(s/sqrt(12))
q<-qnorm(.975)
p<-(1-pnorm(abs(d)))*2

The three values we have got:
d = −2.020726 , q = 1.959964 and p = 0.04330814.

The variable p that was calculated last has a value
of ≈ 4%. It is the probability that a number having
standard normal distribution deviates further away
from 0 than our d ≈ −2.02. Thus it is the p-value
of our test.

As we have already explained – if the H0 is true, i.e.
the expected weight of the packs is 10 kg – the p-
value is uniformly distributed over the interval [0, 1].
Thus, if e.g. we want to decide on the level of 5%,
then we must find an interval of length 0.05 within
the interval [0, 1] into which the p-value typically
falls if the alternative hypothesis is true. As in our
case the alternative hypothesis is that the expected
weight is not 10 kg, and in this case d has typically
a large absolute value, implying that the p-value is
typically small if the alternative hypothesis is true.

Thus in our case the critical set, based upon the
p-value is the interval [0, 0.05], so we have to reject
the H0 if the p-value is small. The p-value is ≈ 4%,
which falls into the critical region for the p-value.
Thus we reject the H0 i.e. the statement that the
expected weight of the packs is 10 kg.

Now we were able to reject the null hypothesis, while
we have run such a procedure, where the probability
of the type I error was α = 0.05 i.e. 1/20. Thus
we knew that our method rejects the H0 on average
once in 20 such cases, when the sample comes from
the H0 (in our case this means that in the pack the
average wood amount is 10 kg), only we have got by
chance an average which differs substantially from
the expected value.

If we applied a hypothesis test on the level of α =
1% or = 3% then the critical region for the p-value
would have been [0,.01] or [0,0.03]. These do
not contain the p-value of our sample – compared to
these limits the p-value is not small –, so we would
have accepted the null hypothesis at the levels of 1%
and 3%.

The corresponding quantiles to these levels are
qnorm(.995) ≈ 2.57 and qnorm(.985)) ≈ 2.17
Thus of course the critical regions (−∞,−2.57] +
[2.57,∞), (−∞, 2.17] + [2.17,∞) which correspond
to d do not contain our value d ≈ −2.02.

The last calculations show that if we choose a pro-
cedure that rejects erroneously the H0 only in 3 or 1
percent of the cases, then we must accept the hypot-
hesis that the expected weight is10 kg. Then why
do we not use these ‘better’, 3 or 1 percent levels?

The reason is that if we improve (decrease) the le-
vel, this automatically implies the shrinkage of the
critical set. And this has the consequence that the
procedure will be less critical to observations coming
from the alternative hypothesis. Mathematically:
the probability of type II error increases. Of course
the level should be chosen according to the severity
of the first type error. If the rejection implies the
halting of a whole factory for example, e.g. in in-
dustrial process control, then it is common to apply
low levels (and to ensure the quality – which corres-
ponds to H0 – by complementary procedures).

In our case if such packs would have been shipped,
which have expected weight of 9.9 kg and we still
would decide by 12 measurements and the above d
whether we accept the H0 hypothesis, that the ex-
pected weight is 10 kg then
if the level α of the hypothesis test is

5%, then the prob. of type II error is 6.6%
3%, then the prob. of type II error is 9.8%
1%, then the prob. of type II error is 18.7%

for the given element of 9.9kg of the alternative
hypothesis.

I.e. if we apply for example a test of level 1% for
testing if the expectation is 10, then in almost one
fifth of the cases a 12 element sample, which has
expectation 9.9 will be accepted as coming from a
population having expectation 10 in spite of having
supposed a low variance (s.d.=0.1) for the individual
observations.

The above results can be calculated by the script

m1<-(9.9-10)/(0.1/sqrt(12))
q5<-qnorm(1-.05/2)
q3<-qnorm(1-.03/2)
q1<-qnorm(1-.01/2)
pnorm(q5,m1)-pnorm(-q5,m1)
pnorm(q3,m1)-pnorm(-q3,m1)
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pnorm(q1,m1)-pnorm(-q1,m1)

Here m1≈-3.46 is the standardized difference (-0.1)
of a pack with expected value 9.9.

The next figure shows the changes of the type II error
probabilities (vertical axis) depending on the chosen
type I error probability (horizontal axis) if we have
a sample of 12 elements, coming from the normal
distribution from H1 with expected value 9.9, and if
the standard deviation of the observations is 0.1.

We have plotted the type II error probabilities only
for type I error probabilities larger than 1/100, as
it is true that the curve equals 1 for α = 0, but it
decreases very quickly from here. The blue dots on
the curve are the type II error probabilities we have
calculated previously.

The second curve shows the type II error probabi-
lities (vertical axis) for given α = 0.05 type I error
probability and expectation µ = 9.9 as a function of
the sample size (horizontal axis) which varies in the
range 1,...,25.

If we have just a single observation, then the 5%-
critical region is the complement of the section
±1.96 ∗ 0.1 ≈ [−0.2, 0.2], into which a random ob-
servation from N (0.1, 0.1) falls with probability
pnorm(.2,.1,.1)-pnorm(-.2,.1,.1)≈ 0.8299.

That is the reason why is the value of the curve at 1
observation approximately 0.83. The other dot on
the curve is the previously computed 6.6% type II
error probability for a sample having 12 elements.

The third curve shows the type II error probabilities
(vertical axis) for a given sample size of 12 as a func-
tion of the expected value of the sample (horizontal
axis). The type II error probability is obviously the
highest if we have µ = 10: here it equals to the
complement of the level of the procedure, 0.95.

It can be seen, how quickly decreases the type II er-
ror probability as the difference between the actual
expectation and 10 increases. Here we see again,
that for µ = 9.9 the procedure with α = 5% has a
type II error probability of 6.6%.

::
ii)

:::::
The

:::::::
u-test

:::
for

::::
the

::::::::::
averages

::
of

:::::
two

:::::::::
samples

Let the first set of observations be x1, ..., xn, and
the other y1, ..., ym. Let us suppose that these are
observed values of the independent X1, ..., Xn and
Y1, ..., Ym random quantities, where EX1 = ... =
EXn = µx and EY1 = ... = EYm = µy further
DX1 = ... = DXn = σx and DY1 = ... = DYm = σy.
Under these conditions, if the expected value of the
two groups is equal, i.e. if µx = µy, then the distri-
bution of the statistic

d =
x̄− ȳ√

σ2
x/n+ σ2

y/m

is standard normal.
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Thus, if we want to investigate whether the equality
of the two expectations can be accepted at level α,
then we must check whether the d defined previously
belongs to the critical set

K = (−∞,Φ−1(α/2)] + [Φ−1(1− α/2),∞).

Furthermore, if our alternative is that the expected
value of the first group is larger than that of the
second, then this question can be answered affirma-
tively if d is larger than Φ−1(1 − α). Finally, if our
alternative is that the expected value of the second
group is larger, then (−∞,Φ−1(α)] is the critical
region.

If we want to decide based on the p-value, then
the p-value of the two-sided alternative EX 6= EY

is 2 ∗ (1−Φ(|d|)), the p-value to the alternative
EX > EY is 1−Φ(d), and that of to EX < EY is
Φ(d).

Let us consider the previous example again; suppose
that the first sample is the first 5 out of the 12 ob-
servations, and the second is the last 7. Furthermore
let us suppose again, that the standard deviation is
0.1 in both groups. Then the procedure above can
be carried out for the following hypothesis-pair

H0: EX = EY

H1: EX < EY

and at the level α = .01 as follows:

z<-c(9.8, 9.7,9.9,10.4,9.5,10,
9.9,10.1,10 ,10.1,9.8,10.1)
(xa<-mean(z[1:5]));(ya<-mean(z[6:12]))
(d<-(xa-ya)/(.1*sqrt(1/5+1/7)))
qnorm(.01)

The results:
The two averages: 9.86 and 10.
The value of the d statistic: -2.39.

The upper limit of the 1%-critical region: -2.33.

It means that we have to reject on the level α = 1%
the hypothesis about the equality of the two expec-
tations to the alternative that the expectation of
the second group is larger as the statistic d =-2.39
belongs to the critical set (−∞,−2.33].

If we had considered the two-sided alternative, then
as qnorm(0.005)=-2.575829, the critical region wo-
uld have been (−∞,−2.58] + [2.58,∞) which does
not contain d =-2.39, so we had to accept the hy-
pothesis of the equality!

But on the other hand as the critical values belong-
ing to the 5% level and the one-sided alternatives
are: qnorm(0.05)=-1.64 and qnorm(0.95)=1.64,
finally the two-sided are qnorm(0.025)=-1.96 and
qnorm(0.975)=1.96, so we have to reject the hy-
pothesis of the equality in case of any common al-
ternative.

These decisions can be also read from the three
p-values, being 0.0168, 0.0084 and 0.9916 respec-
tively, which are obviously following from each other.

Summary

The value of the test statistic d =-2.39 should be
an observed value of a standard normal variate in
case of H0. We see that its absolute value is too large
to consider it as a typical value under H0 (unless we
want to be extremely sure about our rejection – this
was shown for the results in case of α = 0.01). Its
value much more refers to the alternative hypothe-
sis. These results can be expressed by the previously
calculated quantile values and obviously by the com-
puted p-values as well.

:::::
3.2.b

::::::::
Testing

::::
the

:::::::::
equality

:::
of

::::::::::
variances

:::
by

:::::::
F-test

Let us supoose that we have the observations
x1, ..., xn and y1, ..., ym. We know that they are
normally distributed and independent. Let us sup-
pose that within the two samples the variances of
the observed random quantities are constant. Howe-
ver, it is questionable whether the variances of the
two samples are equal. So let our research question
be the equality of the variances and the alternative
be that the first sample has a larger variance.

It means that we consider the following two hypot-
heses:

H0 : σx = σy

H1 : σx > σy

If H0 is true, then the ratio of the corrected empirical
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variances:

d =

∑n
i=1(xi − x̄)2/(n− 1)∑m
j=1(yj − ȳ)2/(m− 1)

has the Fn−1,m−1 distribution.

Based on this observation we can construct a hypot-
hesis testing method for a given level α as follows.
We have to reject the hypothesis of the equality if
for the calculated d statistic d > F−1

n−1,m−1(1 − α),
where F−1

n−1,m−1(1 − α) is the α-quantile of the F -
distribution with parameters n− 1,m− 1.

Using the previous data, we can continue the comp-
utation in R, considering the first 5 elements of our
data as measurements from x, and the last 7 ele-
ments as measurements from y.

z<-c(9.8, 9.7,9.9,10.4,9.5,10,
9.9,10.1,10 ,10.1,9.8,10.1)
(d<-var(z[1:5])/var(z[6:12]))
qf(.95,4,6)

The value of d is 8.475, and the 0.95-quantile is 4.53,
which means that we have to reject the equality hy-
pothesis of the two samples. This is shown by the
p-value as well, which is by the formula 1-pf(d,4,6)
just about 0.012.

———

We may do the same investigation using a suitable
parametrization of the var.test() function in the
stats package

var.test(z[1:5],z[6:12],1,"greater")
The result of the call is the following:

F test to compare two variances

data: z[1:5] and z[6:12]
F = 8.475, num df = 4, denom df = 6, p-value = 0.01207
alternative hypothesis:
true ratio of variances is greater than 1
95 percent confidence interval:
1.869344 Inf
sample estimates:
ratio of variances
8.475

We can see that we have got a somewhat more de-
tailed result, compared to our own calculations.

- Among the parameters of var.test() there is a
number 1, meaning that we intend to test the equa-
lity of the variances. If the question would have been
that the variance of the first group equals 1.5-times

the variance of the second, then we should have writ-
ten 1.5 here.

- Seemingly among the results of the var.test()
function the same statistic is appearing twice: the
8.475 is once the value of the F statistics and later
as the ratio of variances – this is the d value,
which we have calculated previously. The confiden-
ce interval refers also to this ratio, the lower limit of
the interval is given by the formula d/qf(.95,4,6).

- The F value equals with the d value in our case,
as we wanted to test the equality of the variance ra-
tio to, 1. If the test would have been e.g. about the
equality of the variance ratio to r=1.5 (i.e. the vari-
ance of the first group is r-times the variance of the
second group), then the F value would be 1/r times
the ratio of the variances – and of course the p-value
would be the corresponding probability – while the
ratio of the variances and its confidence interval wo-
uld remain the same.

———

A simulation example

Let us suppose that we intend to show that
‘The variance is reduced to one third
if we repeat each measurement three times.’

If we can indeed perform three measurements for a
value to be measured and consider their average as
a single result, then the variance of these measure-
ments will exactly be the third of the variances of
the original measurements. As if X1, X2, X3 are in-
dependent variables with identical variance σ2, then

D2(X) = D2 ((X1 +X2 +X3)/3) =

=
(
D2(X1) +D2(X2) +D2(X3)

)
/9 = σ2/3

Let us now prove the statement via simulations.

Let us suppose that the errors of the original mea-
surements are standard normal and let the function
gen() generate their error, while the procedure, bas-
ed on the repeated measurements have errors given
by the function gen3(). In this example we have
samples of size n=19 and n3=16.
The simulation and the test can be run as follows:

rm(list=ls())
set.seed(123)
gen<-function() rnorm(1)
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gen3<-function() mean(rnorm(3))
n<-19;n3<-16;
x<-NULL;y<-NULL;
for(i in 1:n) x<-c(x,gen())
for(i in 1:n3) y<-c(y,gen3())

var.test(x,y,3)

The result of the program is the following:
F test to compare two variances
data: x and y
F = 1.3803, num df = 18, denom df = 15, p-value = 0.5336
alternative hypothesis:
true ratio of variances is not equal to 3
95 percent confidence interval:
1.483231 11.043005
sample estimates:
ratio of variances
4.141046

We can easily check if the script has indeed used the
previously written formulas by the following prog-
ram:

var.r<-var(x)/var(y);
(f.val<-var.r/3); # F.value
2*min(p<-pf(f.val,n-1,n3-1),1-p)# p.value
a<-.95;b<-1-(1-a)/2 # conf.int:
var.r/c(qf(b,n-1,n3-1),qf(1-b,n-1,n3-1))
var.r # ratio of variances

In our case we chose the alternative hypothesis
σx/3 6= σy, as this was logical in this example. It
is however worth checking, how would the p-value
of the F -statistics and the confidence interval of the
variance ratio change, if we consider one-sided alter-
natives.

We may calculate the p-value for the three different
alternatives (the variance of the second group is not
equal, larger or smaller than that of the first) using
our own formula or the program var.test():

# equal: 0.53
2*min(p<-pf(f.val,n-1,n3-1),1-p)
var.test(x,y,3,"two.sided")$p.value

# greater: 0.27
1-pf(f.val,n-1,n3-1)
var.test(x,y,3,"greater")$p.value

# less: 0.73
pf(f.val,n-1,n3-1)
var.test(x,y,3,"less")$p.value

Calculating the confidence interval for the three dif-
ferent alternatives (the variance of the second group
is not equal, larger or smaller than that of the first)
using our own formula or the program var.test():

# equal: [1.48, 11.04]
c(var.r/qf(b,n-1,n3-1),
var.r/qf(1-b,n-1,n3-1))
var.test(x,y,3,"two.sided")$conf.int

# greater: [1.76, Inf]
c(var.r/qf(a,n-1,n3-1),Inf)
var.test(x,y,3,"greater")$conf.int

# less: [0, 9.39]
c(0,var.r/qf(1-a,n-1,n3-1))
var.test(x,y,3,"less")$conf.int

The interpretation of the simulation results:

In case of the hypotheses:
H0: σx/3 = σy
H1: σx/3 6= σy

As the ratio of the two empirical variances turned
out to be 4.14, the value of the F statistic is
4.14/3=1.38. As the two samples have 19 and
16 elements, this ratio has F18,15 distribution, if H0
is true. Thus the two-sided p-value is 0.5335 and
the 95% two-sided confidence interval for the 4.14 is
[1.48, 11.04].

We have got that the p-value of the F statistic is
large, so the probability of getting larger or smaller
variance ratios than the variance ratio of our sample
is large if H0 is true, so the null hypothesis is not to
be rejected.

We come to the same decision under the two one-
sided alternatives as well (it means that the null hy-
pothesis is not to be rejected, i.e. it can be accepted
that the variance of the first sample is three times
that of the second sample). As it can be seen from
the results of the above scripts, the p-value under
the right-sided alternative is 0.27 and the left-sided
p-value is obviously its complement: 0.73. So both
p-values are so large that they do not support the
rejection of the null hypothesis.

:::::
3.2.c

:::::
The

::::::
t-test:

:::::::::
equality

::::
for

::::
the

:::::::::::::
expectation

:::
in

::::
case

:::
of

::::
the

::::::::::
unknown

:::::::::
variance

:
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We describe the testing methodology for four different problems. In all cases we shall use the t.test()
function in the package stats. The test has practical importance if we have relatively few observations,
as in case of many observations we usually make just a negligible error, if we approximate the distribution
of the statistics by the standard normal distribution.

One sample t-test:

t.test(x,mu = m)

Let the observed vector be x1, ..., xn, a realization
of the X1, ..., Xn independent, normally distributed
random variables with the same expectation and va-
riance. The question is whether the expected value
of the observations is equal to a given value m.

The problem can be solved by the help of the follo-
wing statistic:

d =
x̄−m√∑n
j=1(xj−x̄)2

n−1
/n

as if Xj ∼ N (m,σ) with the given m and an unk-
nown σ, then the distribution of the above statistic
is tn−1. One can observe that in the denominator of
the statistic under the square root we have divided
the corrected empirical variance by n.

The problem can be solved by the t.test() func-
tion in the stats package of the R environment as
follows:

z<-c(9.8, 9.7,9.9,10.4,9.5,10,
9.9,10.1,10 ,10.1,9.8,10.1)
t.test(z,mu=10)

The parameter mu=10 is the expected value in the
null hypothesis. The default alternative is that the
expectation 6= 10, so if we have other alternatives,
then it has to be taken care of. The result:

One Sample t-test
data: z
t = -0.8731, df = 11, p-value = 0.4012
alternative hypothesis:
true mean is not equal to 10
95 percent confidence interval:
9.794622 10.088711
sample estimates:
mean of x
9.941667

We can see that the t-value is small in absolute value,
(t = -0.8731) so the corresponding p-value is large

p-value = 0.4012. The 95% confidence interval
for the expected value of the observations contains
the hypothetical m =10 expectation. Thus there is
no need to reject the null hypothesis, i.e. that the
expected value of the observations is 10.

Let us change the alternative:

t.test(z,mu=10,alternative="two.sided")
t.test(z,mu=10,alt="less")
t.test(z,mu=10,alt="greater")

The first is the same as before, only we have exp-
licitly written the default parameters. In the next
two calls we have abbreviated the name of the para-
meter, it is allowed as it can be identified this way
as well.

Only the p-value and the confidence interval changes
together with the alternative. The table of the re-
sults:

alternative p-value conf.int
two-sided 0.4012 (9.79, 10.09)
less 0.2006 (-Inf, 10.06)
greater 0.7994 (9.82, Inf )

Thus there is no need to reject the null hypothesis,
i.e. that the expected value of the observations is 10
under any alternative hypotheses.

Two-sample t-test in case of equal variances:

t.test(x,y,var.equal = TRUE)

Let the first sample be x1, ..., xn and the second
y1, ..., ym. Let us suppose that the observations are
independent, normally distributed, with unknown
standard deviation σ.

Under these conditions, if the two samples have equ-
al expected values, then the statistic

d =
x̄− ȳ√∑n

j=1(xj−x̄)2+
∑m

`=1(y`−ȳ)2

n+m−2
( 1
n

+ 1
m

)

has tn+m−2 distribution. The first term in the deno-
minator of the statistic under the square root is an
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unbiased estimator for the common variance of the
samples. As this is the

n∑
j=1

(xj − x̄)2 +
m∑
`=1

(y` − ȳ)2

sum of the squared differences of the observations
from the sample mean, divided by n + m − 2. This
variance estimator is multiplied by 1/n+ 1/m under
the square root, as it can easily be seen (e.g. term
by term) that this way we get an unbiased variance
estimator of the numerator.

Continuing the earlier example, we can interpret and
solve it with the following command:

t.test(z[1:5],z[6:12],var.equal=TRUE)

We get the answer:

Two Sample t-test
data: z[1:5] and z[6:12]
t = -1.0366, df = 10, p-value = 0.3243
alternative hypothesis:
difference in means is not equal to 0
95 percent confidence interval:
-0.4409225 0.1609225
sample estimates:
mean of x mean of y
9.86 10.00

The fact that the 95% confidence interval for the
differences of the means contains the 0, implies that
there is no need to reject the hypothesis of the equ-
ality. This is supported by the p-value as well. And
a little practice helps to see it immediately from the
value of the statistic. A t distribution with 10 deg-
rees of freedom does not differ very much from the
standard normal, so a number with absolute value
around 1 cannot fall into the critical region.

We may save the result of the above t.test() to
a variable, e.g. to W. If we investigate this variable
with usual methods like class(W), or str(W) etc.,
then we see that it is a list with 9 elements, of a class
htest i.e. ‘hypothesis test’. It turns out, however
that the elements do not contain much more infor-
mation than the ones already printed out.

Two-sample t-test in case of different variances:

t.test(x,y,var.equal = FALSE)

Let the first sample be x1, ..., xn and the second
y1, ..., ym. Let us suppose that the observations are
independent, normally distributed, with unknown
and possibly unequal standard deviation σx and σy.
In the formula for d used earlier, the equality of the
variances of the two samples was needed (as we sup-
posed that the squared differences estimate the same
quantity). If the standard deviations are unequal,
then we cannot compute this way. However, there
is another natural estimator for estimating the stan-
dard deviation of the differences of the mean. The
denominator contains the corrected empirical vari-
ance of the sample variances s2

x and s2
y, in more de-

tail:

s2
x =

∑n
i=1(xi − x̄)2

n− 1
s2
y =

∑m
j=1(yj − ȳ)2

m− 1
.

Thus
d =

x̄− ȳ√
s2
x/n+ s2

y/m
.

It can be seen that the variances do not cancel out
after taking the expectation of d, like in the case of
equal variances. This implies that the distribution
of this statistic is not a t distribution, even if the
two expectations are equal.

The method is called t-test in spite of this fact, as
the distribution of the statistic under the null hypot-
hesis is approximated by the t-distribution, which
has the nearest standard deviation to the standard
deviation of the statistic.

In the statistical practice we get usually a t-
distribution that a normally distributed quantity
is divided by an empirical estimator for the stan-
dard deviation. This estimation is usually a square
root of averaged squared sums. Thus in practice the
t-distributions have integer degrees of freedom. But
the t-distributions can be defined for any positive
real number as their parameter. This allows us to
find the optimum in the set of all positive numbers,
resulting in the fact that the t-distributions which
is used for approximating the standard deviation of
d, does usually not have an integer as its ‘degree
of freedom’. This we shall see in the next example,
where among the results of the t-test, non-integer
degree of freedom appears.

Modifying the earlier example so, that we do not
suppose the equality of the samples, we can apply
the following command:

t.test(z[1:5],z[6:12],var.equal=FALSE)
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The structure of the result is similar to the earlier
one:

Welch Two Sample t-test
data: z[1:5] and z[6:12]
t = -0.8943, df = 4.681, p-value = 0.4148
alternative hypothesis:
difference in means is not equal to 0
95 percent confidence interval:
-0.5508027 0.2708027
sample estimates:
mean of x mean of y
9.86 10.00

We have ‘Welch Two Sample t-test’ in the title, as
this version of the t-test, where samples with pos-
sibly different variances are compared is also called
Welch-test. The averages of the samples have not
changed. Our decision about the hypothesis, on the
5% level is again the acceptance of the null hypothe-
sis about the equality of the expected values of the
samples.

The rejection of the equality was not to be expec-
ted, seeing the result of the equal variance case.
The approximated degree of freedom is always smal-
ler than the value belonging to the case of the equal
variances, which is now n+m− 2 = 10. The appro-
ximated degree of freedom (which depends not only
on the sizes, but on the empirical variances of the
samples, too) is df = 4.681, and the variance of the
t-distributions with smaller degree of freedom is lar-
ger, as the variance of the tk distribution is k/(k−2)
(it is finite only for k > 2).

The formula for the degree of freedom is(
σ̂2
x̄ + σ̂2

ȳ

)2

σ̂2
x̄

2

nx−1
+

σ̂2
ȳ

2

ny−1

.

This is computed by the next sequence of commands,
for the data we have used.

x<-z[1:5]
y<-z[6:12]
nx<-length(x);nx1<-nx-1
ny<-length(y);ny1<-ny-1
vx<-var(x)/nx
vy<-var(y)/ny
(vx + vy)^2/(vx^2/nx1 + vy^2/ny1)

The paired t-test:

t.test(x,y,paired = TRUE)

Let the bivariate observations (x1, y1),...,(xn, yn) be
such that the members of the n pairs are typically
dependent and correspond to a similar phenomenon,
but the n sample pairs should be independent and
have the same bivariate distribution.
In this case the differences x1 − y1, ..., xn − yn are
identically distributed and independent.

Let us suppose that the differences of the pairs have
normal distribution.

The original question is, whether the expected value
of the elements of the pairs is equal. But this quest-
ion is obviously equivalent to the one, which states
that the differences within the pair have expecta-
tion 0. The advantage of this approach is twofold:
first, we usually reduce the variance by taking the
pairwise differences (e.g. if the pairs refer to the
same individual, then the between-individual vari-
ance is filtered out). Second, the conditions of the
two-sample t-test are not fulfilled for the original
samples, because of the assumed dependence bet-
ween the pairs.

This hypothesis has already been investigated by the
one-sample t-test (there a more general approach al-
lowed for any given value m). We can thus solve the
problem with the following statistic: If uj = xj − yj,
j = 1, ..., n then the procedure of the first t-test can
be applied to u:

d =
ū√∑n

j=1(uj−ū)2

n−1
/n

.

This d value has tn−1 distribution, if the two com-
ponents of the pairs have the same expected value.

Let us use the earlier data set again, like observa-
tions 1 and 7 , 2 and 8 etc. would form a pair.

This data can be understood e.g. as follows: we have
checked only 6 packs, but every pack was measured
twice, and the first measurements were written into
the first row, and the second measurements to the
second row.

Under these assumptions the paired t-test can be
performed in R by the t.test() function of the
stats package as follows:
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z<-c(9.8, 9.7,9.9,10.4,9.5,10,
9.9,10.1,10 ,10.1,9.8,10.1)

t.test(z[1:6],z[7:12],paired = TRUE)

The result:

Paired t-test
data: z[1:6] and z[7:12]
t = -1.19, df = 5, p-value = 0.2875
alternative hypothesis:
difference in means is not equal to 0
95 percent confidence interval:

-0.368677 0.135344
sample estimates:
mean of the differences
-0.116667

This means that although the second measurements
are lighter on average by 0.117kg, we do not have to
reject the equality of the two expectations. Probably
because the standard deviation of the measurement
differences is large, as seen from the width of the
confidence interval (≈ 0.5).

3.3. Goodness of fit

In quite a few cases we have to find answers to questions, which do not fit into the methods defined in the
previous part. This situation arises, when we cannot describe the null hypothesis with a few conditions
for some parameters. Such questions are

• goodness-of-fit,

• the test for the homogeneity of two samples,

• test of independence.

In this part we investigate the first problem. The most frequent of its applications is the normality-check,
as we have seen that the normality is quite often needed to the application of other methods.

But let us start with the general definition. We call goodness-of-fit the hypothesis test, where the null
hypothesis is a given distribution. This means that we must decide, whether it can be accepted that the
observations came from a given distribution. In most of the cases we do not have an exact guess for the
distribution of the observed quantity, so our hypothesis is just about the family of the distributions it might
belong to. But these problems can be simplified to the goodness-of-fit hypothesis for a given distribution, if
the original family is a parametric one. As it is a possible way first to estimate the unknown parameters of
the distribution and then check whether the observed distribution of the sample fits to this member of the
hypothesized distribution family. It is true that this way we perform the estimation and the goodness-of-fit
based on the same data set, which has an effect to the distribution of the test statistics. But there are
proven methods to incorporate this into the decision, at least for certain statistics. First we shall deal with
the most common method, the so-called χ2-test.

:::::
3.3.a

:::::
The

:::::
case

::
of

::::::::
known

::::::::::::
parameters

In its original form the test is suitable for discre-
te distributions only - but we shall see later, how
to deal with continuous distributions. The general
form of the χ2 statistic is:

d =
∑

k

(observedk−expectedk)2
expectedk

,

where k runs through all the possible cases.
First let us consider the easiest problem, where the
supposed distribution is uniform on 2 points. A na-
tural example is gender – let us go back to our data
about the students. This can be solved in R by the
simple command chisq.test as follows:

chisq.test(table(diak[,8]))
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The result (recall that among the 47 students there
were only 12 men):

X-squared = 11.255, df = 1,
p-value = 0.000794

We can see that the p-value is very small (below
0.001), so we can reject the hypothesis that in this
student population the gender distribution is uni-
form with confidence. This means that the difference
in our sample was not caused by pure chance. The
result (χ2-test object) contains the following slots:
- statistic: the value of the statistic;
- parameter: the degree of freedom;
- method: the applied method:

(e.g. goodness-of-fit);
- observed: the observed vector of frequencies;
- expected: the expected vector of frequencies;
- residuals: the Pearson-type residuals:

(observed - expected) / sqrt(expected).

We have seen the first three components when run-
ning the test, the others have the following structure:

> chisq.test(table(diak[,8]))$observed
F M
35 12
> chisq.test(table(diak[,8]))$expected
F M
23.5 23.5
> chisq.test(table(diak[,8]))$residuals
F M
2.372269 -2.372269

So we see the observed and the expected frequencies
and the calculated residuals. Their sum of squares
gives the value of the test statistic. This detailed
list of results is especially useful, if we are interested
e.g. to find out, which cells cause the large value of
the statistic. There is an interesting option, worth
noting. As the χ2 test statistic has just asymptoti-
cally a χ2 distribution, and the convergence depends
not only on the sample size, but also on the frequ-
encies of the single cells, it may be worth using the
simulated p-values:

chisq.test(table(diak[,8]),
simulate.p.value=T)

X-squared = 11.255,
df = NA, p-value = 0.001999

The p-value has become larger by approximately
20% (note that the actual value depends on the ran-
dom numbers in the simulation), but it of course

does not change our decision of rejecting the null
hypothesis, i.e. it is very likely that the deviation
from the uniform distribution was not caused by
pure chance.

The next example is also about a fully specified null
hypothesis. Mr. Somebody has registered each day,
how many advertisement phone calls he received.
Summarizing the results of 100 days, he got the fol-
lowing table. He has received on

15 21 40 14 6 4 days
0 1 2 3 4 5 calls

This means that on the 100 days he has received
altogether 187 calls and e.g. there were 4 such days
when he received 5 calls. He has the hypothesis, that
he is disturbed by 5 advertising companies, each of
them call him independently from each other with a
daily probability 33%. Can the hypothesis be accep-
ted?

We may formulate the hypotheses:
H0 : the daily number of calls is Binom(5,0.33)
H1 : the daily number of calls is not

Binom(5,0.33)

If the calls follow indeed the distribution of H0, then
the probability of k=0,...,5 calls per day:

pk =

(
5

k

)(
1

3

)k (
2

3

)5−k

.

Thus during the 100 days the number nk of such
days, when he receives exactly k calls, for k = 0, ..., 5
is the following:

0 1 2 3 4 5
13.50 33.25 32.75 16.13 3.97 0.39

We can see that under the hypothesized model the
expected number of days with 5 calls does not reach
1, which is too low to apply the chi-squared distri-
bution of the test statistic. But if we join the days
with 4-5 calls, then their joint expected frequency
exceeds 4, which is considered generally enough to
the application of the test. The empirical and ex-
pected frequency of the days in this case is:

0 1 2 3 4-5
empirical: 15 21 40 14 10
expected: 13.50 33.25 32.75 16.13 4.36

These can be compared by the χ2 statistic at the le-
vel of 5%. The value of the χ2 statistic in this case:

d =
∑

k

(observedk−expectedk)2
expectedk

= 13.84
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The suitable χ2 critical value for 5-1=4 degrees of
freedom at the level of 95% is 9.49, which is smaller
than our value of the statistic.

- Thus the hypothesis must be rejected.
- The calls by the advertising companies do not

follow the Binom(5,0.33) distribution.

The above results can be got in R by the following
commands (unfortunately there is no general built-in
simple function for this application of the χ2-test):

x<-0:5 # daily calls
nx<-c(15,21,40,14,6,4) # number of days
sum(nx) # 100 total number of days
sum(x*nx)# 187 total number of calls

# expected number of days (binom dist).
round(v<-dbinom(0:5,5,.33)*100,2)

# joining days 4 and 5
nx[5]<-nx[5]+nx[6];(nx<-nx[1:5])
v[5]<-v[5]+v[6];v<-v[1:5]
round(v,2)

(d<-sum((nx-v)^2/v)) # 13.84
qchisq(.95,4) # 9.49

———

:::::
3.3.b

:::::
The

:::::
case

::
of

:::::::::::
estimated

::::::::::::
parameters

Mr. Somebody, who gave 0.33 as the parameter
of the binomial distribution, has not used his no-
tes. Since, if we consider that he has received 187
calls during the 100 days, then this result is most
likely under the binomial distribution with repe-
tition parameter 5 if its probability parameter is
187/(5*100)=0.374.

Let us investigate our data for this hypothesis as
well.

Assuming the binom(5,0.374) distribution, from
the 100 days, the number of such days, when he re-
ceives exactly k calls, for k = 0, ..., 5 is the following:

0 1 2 3 4 5
9.61 28.72 34.31 20.50 6.12 0.73

The expected number of days with 5 calls is still
too low, so we join the days of 4-5 calls again. The
empirical and expected frequency of the days in this
case is:

empicial: 15 21 40 14 10
expected: 9.61 28.72 34.31 20.50 6.86

The value of the χ2 statistic for this table is d=9.54,
which is still larger than the critical value of 9.49
from above. And moreover we must compensate
that we have estimated the probability parameter
of our hypothesized distribution from the data. So
the critical value has to be taken from the χ2 dist-
ribution with 3 degree of freedom! This means that
the critical value in our case is the 95% quantile of
the χ2

3 distribution, which is 7.81. So the data does
not fit to the binomial distribution even in case of
an estimated parameter.

Remark

The p-value of the statistic is 2.3%. This means that
if we perform the hypothesis test at the level of 1%,
then we can accept the hypothesis of binomial dist-
ribution. However, in this case we apply a procedure
which

- rejects a sample with 100 elements coming from
a binom(5,0.384) distribution only with a probabi-
lity of 1/100, but

- it accepts such distributions, which are actu-
ally not binomial, with much higher probability –
i.e. this test has higher type II error probability.

———

:::::
3.3.c

:::::
The

:::::
case

::
of

::::
the

:::::::::
Poisson

:::::::::::::
distribution

Mr. Somebody could have thought that his data
follows a Poisson distribution. This can be based
on the assumption that the random time intervals
between subsequent calls are independent, and have
identical exponential distribution. If we estimate
the parameter of the Poisson distribution, which co-
incides with the expected value, then we get from
our data that µ̂=1.87. If we consider the frequencies
as Poisson(µ̂), then the days with calls 0,...,5+
have expected frequencies in 100 days as the follo-
wing table shows.

0 1 2 3 4 5+
15.41 28.82 26.95 16.80 7.85 4.17

If we compare this table with the empirical frequ-
encies by the χ2-test, then we get d=9.37, which
is smaller than the critical value, based on the χ2

4

distribution for the level of 5%, which is 9.49. This
implies that the hypothesis of the Poisson distribu-
tion can be accepted at the 5% level.
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We can compute the above results in R by the help
of the following commands:

x<-0:5# number of daily calls
nx<-c(15,21,40,14,6,4)# obs.freq.

(m<-sum(x*nx)/100) # expectation

v<-dpois(0:4,m)*100 # exp.freq.
round(v<-c(v,100-sum(v)),2)# the last

(d<-sum((nx-v)^2/v)); qchisq(.95,4)

Remark

We had to apply the quantile of the χ2 distribution
with 4 degree of freedom because we have compared
the frequencies of 6 cells, but one parameter of the
fitted distribution was estimated from the data, and
6-1-1=4.

———

:::::
3.3.d

:::::
The

:::::
case

::
of

::::::::::::
continuous

::::::::::::::
distributions

However, in most of the cases the binning of our
data is not so obvious as it was for discrete distri-
butions. If we want to fit a continuous distribution
(typically the normal), then we must bin the data.
In this case we must take care on the fact that into
every interval must fall some values (generally this
means at least five). This can be achieved the easiest
if we choose equiprobable intervals with respect the
distribution to be fitted. This ensures that at least
the theoretical (expected) frequencies will be equal
in the classes.

The test can be constructed based on the following
steps (for the number of intervals there is no unique
optimal value: some programs use log2(n), others
simply use 10 as default value with the condition
that the classes with observed frequencies below 5
are joined).
- The determination of the number of classes (n).
- The determination of the endpoints by using sui-

table quantiles.

- The computation of the number of observations
in the classes.
- The estimation of the parameters of the fitted

normal distribution.
- The computation of the expected frequency of

the classes under the estimated normal distribution.
- Computation of the test statistic.
- Determination of the p-value.

Our student data set is rather small, so we work
with the smallest number of classes, that gives po-
sitive degree of freedom after having estimated the
parameters of the normal distribution. As it has 2
parameters, the minimal number of classes is four.

n <- 4;j <- 5
# number of intervals and the variable
q <- c(1:n)/n
h <- c(-Inf,qnorm(q))
mu <- mean(diak[,j])
sig <- sd(diak[,j])
h <- h*sig+mu
# these are the limits

nu <- rep(0,times=n)
for (i in 1:n)

nu[i]<-
sum((diak[,j]<h[i+1]) & (diak[,j]>=h[i]))
# expected frequency:
np <- sum(nu)*rep(1/n,times=n)
chi<-sum((nu-np)^2/np)
# the p-value:

p <- 1-pchisq(chi,n-3)
p

The result is p = 0.23, and it shows that the height
can be accepted as normally distributed, in spite of
its obvious mixture–type appearance (as the height
of men and women is different).

The above reasoning implies that the χ2 test is su-
itable for fitting continuous distributions, but the
method is not ideal: the results may depend on the
binning. We shall come back to this issue later.

3.4.The test of independence

The probabilistic independence of two random quantities mean that the distribution of one does not depend
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on the actual value of the second. The test of independence as a method is the statistical investigation of
the question about the probabilistic independence of two or more random quantities.

In this part we shall deal with the test of independence, when the observed units can be categorized with
respect of two (or more) points of view, and each unit can have finitely many possible types according to
all of the points of view. The observations for such units are typically summarized in bivariate contingency
tables. So we shall deal with contingency tables and investigate if the properties of the two points of view
are independent.

Let us suppose that the variables have r and c pos-
sible values respectively. The data is given corres-
ponding to the possible value pairs in a table of size
r × c, where the element in the ith row and jth
column is ni,j. This means that we had ni,j such
cases, when for the observed unit the first variable
had its ith possible value and the second had its jth
possible value.

There are quite a few methods for checking the inde-
pendence of the two classifying variables. We have
some classic measures, including the correlation and
multivariate techniques like different correspondence
models. Here we show just the most classical met-
hod, the χ2 independence test.

The χ2 independence test is in fact a special
goodness-of-fit with estimated parameters. Since

- first we estimate by the sample, what are
the probabilities of the possible values of the first
property and then the same for the types with
respect of the second property.

- Then – supposing that the two properties are
independent – we say that the joint occurrence of
the pairs must be equal to the product of these two
estimated probabilities, multiplied by the number of
observations. Thus we give an estimation for the va-
lues of the frequency table, under the hypothesized
independence of the two properties.

- Finally, we investigate if the difference between
the estimated and the observed frequency table is
not too large to the acceptance that these two are
essentially equal.

The procedure is called χ2 independence test as the
distance between the two tables is measured with
the help of the χ2 statistic, which is indeed approxi-
mately χ2 distributed if the independence holds true
and the number of observations is not too small in
each cells.

Some notations, helping the description:

The total number of observations

n = n+,+ =
r∑
i=1

r∑
j=1

ni,j.

If ni,+ =
∑

j ni,j and n+,j =
∑

i ni,j, i.e. ni,+ and
n+,j are the row and column sum of the frequency
table, respectively, then an estimator of the row-wise
distribution:

(n1,+/n, ..., nr,+/n),

and the same for columns:

(n+,1/n, ..., n+,c/n).

Thus, if for n = n+,+ observations the two properties
are independent from each other, then the expected
number of observations falling into the cell (i, j) can
be estimated by

n̂i,j = n
ni,+
n

n+,j

n
.

Thus to decide about the independence of the two
properties we must check if the observed ni,j table is
not too far from the table n̂i,j, got by the indepen-
dence hypothesis.

It is known that the

d =
∑
i,j

(ni,j − n̂i,j)2

n̂i,j

distance between the two tables can be approxima-
ted by the χ2

(r−1)(c−1) distribution, where r and c
are the number of rows and columns, respectively,
if the independence holds true and the number of
observations is not too small in each cells.

First we show, how can we carry out this hypothesis
test by the help of the basic formulas of R. Next we
turn to the question of using the chi.sq() function
of package stats.

So let us suppose that it is given the D frequency
table. Our task is to investigate the following pair
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of hypotheses for the two categorical variables, upon
which the table is based:

H0: are independent from each other
H1: are not independent from each other

:::::
3.4.a

:::::::::::::
Calculations

::::
by

::::
the

:::::
basic

::::::::::::
operations

:

Let us use the data, which is the first example in the
help of the function chi.sq().

rm(list=ls())
D <- cbind(c(762, 327, 468),
c(484, 239, 477))
dimnames(D) <- list(

party = c("Democrat",
"Independent",
"Republican"),

gender = c("F","M") )
D
(n<-sum(D))

As we see, the table contains gender-wise US-data
of party-preferences, based on altogether 2757 ob-
servations.

The following commands calculate the value of the
above d statistic and the corresponding χ2

2 critical
value. We use the χ2

2 distribution, as the size of the
table is 3×2, i.e. in case of independence the degree
of freedom of the approximating χ2 distribution to
d is 2=(3-1)(2-1).

rp <- rowSums(D)/n
cp <- colSums(D)/n
E <- n*rp%o%cp
(d <- sum((D-E)^2/E)) # 30.07
qchisq(0.95,2) # 5.99

As we see from the result of the calculations, the
value of d is 30.07 and the threshold value for ac-
cepting H0 is 5.99. Thus the value of the statistic
fall into the level 5% critical region, so by the χ2 test
we must reject the independence of the gender and
the party-choice.

The result is not surprising, if we check the table
thoroughly.

gender
party F M
Democrat 762 484
Independent 327 239
Republican 468 477

As it can be seen, there are many more women (co-
lumn F) then men, but the Republican party was
chosen by more men than women.

The above-mentioned reason for non-independence
in this form is just a first guess. As from the point
of independence not the frequencies, but the relative
frequencies and their ratio is relevant. More exactly
we must investigate that e.g. it is true that in the
three rows of the table the women/men ratio is app-
roximately equal. Or equivalently the fact that the
two distributions over three possible values, defined
by the data of the first and the second column can
be considered as equal.

:::::
3.4.b

:::::::::::::
Application

::
of

::::::::::::::::
chisq.test()

We have seen above, how to check the indepen-
dence for our table manually, but for the more de-
tailed results (e.g. residuals) the statistic of the
stats::chi.sq() function might be useful. The χ2

test of independence can be run by the chisq.test
command, if previously a contingency table was al-
ready created from the data.

If we run the χ2 test of the stats package with the
parametrization chisq.test(D), then we just get
the following lines:

Pearson’s Chi-squared test
data: D
X-squared=30.07, df=2, p-value=2.954e-07

In this printout only the p-value of the d statis-
tic is new. But we can calculate this ourselves by
the 1-pchisq(d,2) command. The printout is so
short because from the object of type htest gi-
ven as a result of the chisq.test() the method
print.htest() writes only these parts.

The next commands save the object, containing the
result of the chisq.test(). Later we show, how
to compute the elements of this object. Finally, we
show how to use the elements of this result object
to analyse the frequency table.

We repeat some earlier commands in order to incre-
ase the clarity of our explanations.

w <- chisq.test(D)
class(w);str(w,give.a=FALSE)
n<-sum(D)
rp<-rowSums(D)/n;cp<-colSums(D)/n
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E<-n*rp%o%cp
V<-n*(rp*(1-rp))%o%(cp*(1-cp))

# chi2 statistic
(d<-sum((D-E)^2/E))

# p-value of the statistic
1-pchisq(d,prod(dim(D)-1))

w$observed-D
w$expected-E

# components of the chi2 statistic
w$residuals-(D-E)/sqrt(E)

# the standardized errors per cell
w$stdres-(D-E)/sqrt(V)

The result of the str(w) structure is
the following print:

[1] "htest"
List of 9
$ statistic: Named num 30.1
$ parameter: Named int 2
$ p.value : num 2.95e-07
$ method : chr "Pearson’s Chi-sq ...
$ data.name: chr "D"
$ observed : num [1:3, 1:2] 762 327 ...
$ expected : num [1:3, 1:2] 704 320 ...
$ residuals: num [1:3, 1:2] 2.199 ...
$ stdres : num [1:3, 1:2] 4.502 ...

So the earlier calculations present every part of the
result object.

The results of the computations can be explained as
follows. In the result object the element

- $observed is the same as the processed D table
- $expected is the same as the table, which we

got from the table D by estimating the number of
observations in the cells by assuming the indepen-
dence of the two components, which create the table

- $residuals are squared and summarized for
getting the statistic d, used for independence test i.e.
giving the χ2 statistic. This table is an important
tool to decide, which cells of the table show substan-
tial deviations from the hypothesized independence.
These cells might have decisive contribution for the
statistic d to exceed the acceptance threshold.

- $stdres contains the standardized values, as-
suming that the individual cells of the table follow
the binomial distribution with parameters n as ob-
servations and n̂i,j/n probability – which is the case

if the independence holds.

Let us check, what do the $residuals and $stdres
tables give in our case.

The data in the $residuals table
printed by the round(w$residuals,3) command:

gender
party F M
Democrat 2.199 -2.505
Independent 0.411 -0.469
Republican -2.843 3.239

It can be seen that the largest additive component of
the d statistic is provided indeed by the republican
men. If we let print out the w$residuals**2 table
as well, then it can be seen that this cell, together
with the cell of the necessarily under-represented
republican women give almost two third (18.57) of
the total d statistic (30.07).

It should be mentioned that as it can be seen from
the results of the chisq.test(D[-3,]) statistic, the
sub-table formed from the first two rows of the ori-
ginal table can be considered as being independent
(p-value=0.19). Thus, if we investigate just the
question of gender-dependence of preferences only
for democrats-independents, then the independence
of the party-preference and gender can be accepted.

The data of the $stdres table
printed by the round(w$stdres,3) command:

gender
party F M
Democrat 4.502 -4.502
Independent 0.699 -0.699
Republican -5.316 5.316

Here we have divided (standardized) the difference
between the observed frequencies D and the est-
imated frequencies under independence E with the
standard deviation we get for the elements of D, as
the standard deviation of the binomial distribution,
which has as probability parameter the product of
the two estimated probabilities defining the cell.

This can equivalently calculated as
√
n times the

product of the standard deviation of the two Ber-
noulli random elements of the respective row and
column. As if the probability of the property in the
ith row of the table is pi,+, the same for the the
property in the jth column is p+,j, then the stan-
dard deviation of the indicator of these properties
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is
√
pi,+(1− pi,+) respectively

√
p+,j(1− p+,j), and

the standardization factor is
√
n times the product

of these standard deviations.

Thus the elements of the $stdres table follow app-
roximately the standard normal distribution. The
numbers of the previous table, which are larger than
3 implies that for the republican cells, but also for
the two democrat cells there is a substantial devia-
tion from the independence.

Some remarks about the table $stdres:

- From the above print it is clear that in the rows
there are numbers with the same absolute value, but
with different signs. This is always necessary in case
of tables with only two columns. We could see the
same for tables with just two rows for the columns.
For tables with more rows and columns the results
are usually different – even that is not true that the
sum of the elements in rows or columns is 0, as seen
in our cases (for the columns).

In case of two cells the same absolute value is caused
by the fact that the probabilities of an observation
falling into the first or second column are comple-
ment to each other. This implies that the sum of
the two columns of the error matrix D-E is 0, and
that causes that in the matrix V the error variances
are the same within a row.

- When evaluating the normalizing matrix V, we
must take into account that ni,j is the sum of n in-
dependent Bernoulli(pi,+p+,j) random quantities,
where these Bernoulli variables are the product of a
Bernoulli(pi,+) and a Bernoulli(p+,j) quantities,
but the formula D2(XY ) = D2(X)D2(Y ) is valid
even for independent variables X and Y only if the-
se have 0 expected values, like D-E in our case.

Let us see some examples from our student data base
as well.

table(diak[,6],diak[,8])
chisq.test(table(diak[,6],diak[,8]))
chisq.test(table(diak[,6],
diak[,8]),simulate.p.value=T)

This is a typical case, when the use of simulated p-
values is recommended, due to the lot of cells, which
are empty or contain just a few observations. Of

course both options reject the independence of shoe
size and gender. The printed result:

F M
36 3 0
37 7 0
38 9 0
39 7 0
40 7 0
41 1 2
42 1 1
43 0 5
44 0 2
45 0 1
46 0 1
X-squared = 40.864, df = 10,
p-value = 1.193e-05
X-squared = 40.864, df = NA,
p-value = 0.0004998

In the next example we investigate the dependence
between beer consumption and gender.

table(diak[,3],diak[,8])
chisq.test(table(diak[,3],diak[,8]))
chisq.test(table(diak[,3],
diak[,8]),simulate.p.value=T,B=10000)

The result:

F M
0 28 3
1 1 3
2 1 2
3 1 0
4 2 0
5 1 0
6 0 1
15 1 0
18 0 2
115 0 1
X-squared = 25.297, df = 9,
p-value = 0.002659
X-squared = 25.297, df = NA,
p-value = 3e-04

Now the difference between the p-values of the two
methods is even larger. Let us see, by how much they
differ, if we apply the recommended join of categori-
es. The number of replicates has been increased to
10000 in order to ensure that there will be indeed
higher values among the simulated data than that
of the observed sample.
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sor_2<-diak[,3]>0
table(sor_2,diak[,8])
chisq.test(table(sor_2,diak[,8]))
chisq.test(table(sor_2,
diak[,8]),simulate.p.value=T,B=10000)

sor_2 F M
FALSE 28 3
TRUE 7 9
X-squared = 9.7141, df = 1,
p-value = 0.001829
X-squared = 12.039, df = NA,
p-value = 0.0011

The p-values are near to each other, they are bet-
ween the two values, seen in the table above. These
look as being real for this 2× 2 table.

If we want to get an even more exact result, we may
apply the so-called Fisher-exact test, which gives the
exact probability for getting the observed or even
larger value under the null hypothesis.

fisher.test(table(sor_2,diak[,8]))

The result is more detailed in this case:

p-value = 0.001058
alternative hypothesis:
true odds ratio is not equal to 1
95 percent confidence interval:
2.110881 81.838252
sample estimates:
odds ratio
11.18708

The p-value is very near to the ones previously seen.
It is worth noting, however that for such small samp-
le sizes the test is conservative: it gives slightly
higher p-values, as the current observed value has
positive probability, which is counted to the rejecti-
on region.

We may see a simple example for this phenomenon.

Let us suppose that out of 8 boys and 8 girls some
do sport regularly. Let us see, what are the p-values
for different gender–distributions.

p<-rep(0,times=4);
for (i in 1:4)
{x1<-c(i,8-i);
x2<-c(8-i,i);
p[i]<-round(
fisher.test(rbind(x1,x2))$p.value,3)}
p

[1] 0.010 0.132 0.619 1.000

It can be seen that there is no test for the com-
mon first type error probability of α = 0.05, after
α = 0.01 (which rejects, if the distribution is 0 vs.
8) we immediately get α = 0.13. Mathematically
the randomization may be a solution, but in practi-
ce it may be preferable to take new sample elements
in order to decide about these questions in the bor-
derline cases, like the two-sample plans in industrial
statistics.

3.5.The test of homogeneity

The third application area of the χ2 test is testing ho-
mogeneity. To apply this method, we need just two
vector of frequencies, and the method is the same as
in case of the independence test. So as a last remark,
we rather show the following feature of R, which al-
lows us to define the distribution with the help of
frequencies, just the fact has to be indicated that
these values must be transformed into probabilities.

x <- c(39,37,30,28,2,25)
p <- c(20,20,20,20,10,20)
chisq.test(x, p = p, rescale.p = TRUE)

The result has the well-known format of the χ2 test:

X-squared = 16.879, df = 5,
p-value = 0.004735
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3.6. Closing remarks to the chi2 test

The χ2 distribution of the d statistic is just an app-
roximation even in the case of independence. The
statistic was not created as the squared sum of inde-
pendent normal variables, but dependent binomials.
Thus the approximation of the d statistic with the
χ2 distribution can only be accepted if we have eno-
ugh observations in the cells.

The notion of ‘enough’ was determined by simula-
tions, and the result was that the number of expected
observations

- should be at least 4 if the level is 5%,
- should be at least 6 if the level is 1%,

The stats::chi.sq() program was written on a
way that the program gives a warning if there is
a cell, where the number of expected observations
is less than 4. In this case the already introduced
simulated critical-value calculation is recommended,
as we have done it already - e.g. analogously to the
next command.

chisq.test(table(diak[,8]),
simulate.p.value=T)

3.7. Statistics based on ranks

The Wilcoxon signed-rank test can also be applied
to the comparison of two paired samples, or to test
the symmetry with respect to a given value. It can
also be considered as an alternative to the t-test in
cases, when there are outliers in the data, causing
that the sample cannot be considered as normally
distributed. This results in a low power of the t-test.

The Wilcoxon test does not consider the numeric
value of the sample elements, only their rank in the
ordered sample.

To be more specific, let the sequence of the differen-
ces from a paired sample be Xi−Yi (or the sequence
Xi − µ if we test the symmetry with respect to µ).
Let us suppose that there are no 0 differences (i.e.
that there are no ties in the sequences). Ordering
the sequence |Xi − Yi|, let us compute the sum of
ranks of those, which were positive originally. (The
rank is the index in the ordered sample.) Computing
the same for the negatives, the difference of these
two statistics is denoted by W .

Under H0 (the samples have the same distribution)
we can give the limit distribution of W as normal
with expectation 0 and variance

n(n+ 1)(2n+ 1)/6.

The test can be used with different options for small
sample sizes the most important one is the choice
exact=T , which results that the p-values are bas-
ed on the exact distribution under H0 (which can
be computed by recursion) rather than on the limit
distribution.

If our task is to test the symmetry of the drunken
beer amount, then this method is not suitable, as
it cannot be carried out if we have multiple values
among the sample elements. In this case the ranks
of the equal values is substituted by their average,
but the many equal values may substantially distort
the variance of the statistic. It can be taken into
account for example by using the methods described
in the book of Hollander-Wolfe (1973).

wilcox.test(diak[,3], mu=mean(diak[,3]))

The results are self-explaining: while the t-test can-
not prove the asymmetry, here we got it with high
significance.

V = 190, p-value = 4.172e-05

For the case of paired observations, there is just one
difference: we give two samples and then there is no
need for specifying the mu.
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Let us recall the other data set we have already used
in the first Section about annual maxima of water
level in Budapest and Mohács.

The application of the Wilcoxon test here is quite
natural, as here we cannot suppose the normality of
the observations. We may observe that here it may
be worth applying the one-sided alternative (even
without knowing the data, we may suppose that wa-
ter levels are higher downstream, due to the natural
additional affluents, at least if the gauges are set at
comparable levels).

In the first command we have not applied any cor-
rections, but in this case it was not realistic, as in
practice the 0 points of the gauges are chosen arbit-
rarily. In the second try we have checked the diffe-
rences from the medium water level and the result
was just not significant as the following lines show.

wilcox.test(mohmax,budmax,alternative="g")
W = 3287.5, p-value = 1.766e-09

wilcox.test(mohmax-median(moh),
budmax-median(bud),alternative="g")
W = 2368.5, p-value = 0.06362

The Wilcoxon test, applied to the case of two inde-
pendent samples is often called Mann-Whitney test.
In this case we compare all the pairs (Xi, Yj)

n,m
i=1,j=1

(or order the joined sample (Xi, Yj) with n+m ele-
ments ) and the following formula gives the test sta-
tistic:

m∑
j=1

#{X{’s} < Yj}

which has the following parameters under H0:
the expected value is nm/2 and the variance
nm(n+m+ 1)/12.

Let us use the beer consumption variable of our da-
ta set once more and check if we can get significant
results for the gender differences by the known tests.

fs<-diak[diak[,8]=="F",3];
ns<-diak[diak[,8]=="M",3]
wilcox.test(fs,ns)

The result:

W = 94.5, p-value = 0.0008862
t.test(fs,ns)
t = -1.348, df = 11.055, p-value = 0.2046

These results also support the Wilcoxon test: while
the t-test was not able to detect the difference bet-
ween the beer consumption of the genders, it gave a
clearly significant result. But this can of course only
be true for the non-normally distributed samples, as
it is well-known that for normal samples the t (u)
tests are the most powerful.

One of the sample data sets of R also shows an in-
teresting application:

boxplot(Ozone ~ Month,
data = airquality,
xlab="month",ylab="ozone level")
wilcox.test(Ozone ~ Month,
data = airquality,
subset = Month %in% c(5, 8))

Here we have used the interface called formula, tak-
ing care that exactly two groups were considered.

If we have more, non-normally distributed groups,
then we may use the Kruskal-Wallis-type nonpara-
metric analysis of variance. The above figure also
supports that there is indeed a substantially looking
difference between the months.

———
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3.8. ROC curve

In many cases (especially in the medical or the social
sciences) it is customary to measure the goodness
of the methods by the so-called ROC-curve. This
approach can also be used for defining the most app-
ropriate critical region.

In order to understand the notion, let us suppose
the following simple hypothetical situation, where
the doctor knows exactly which patients are ill (e.g.
by another established diagnostic method). These
patients are called positive (in accordance to the
medical terminology), and their status is denoted by
1. The negative cases are denoted by 0.

We suppose that the method under investigation
orders to each patient a probability that he or she
is positive. In a statistical hypothesis setting this is
practically 1− p (where p is the p-value). Based on
these probabilities, a classifier can be defined as a
threshold (those patients are declared positive, who
have higher probability than the threshold). In the
next part we give some typical graphical methods
for presenting the results.

The ROC (Receiver Operating Characteristic) curve
relates the proportion of correctly positively classifi-
ed cases (True positive rate, TPR) to the proportion
of erroneously positively classified cases (False posit-
ive rate, FPR). It can be expressed as:

(FP/N ;TP/P )

where P and N denote the number of positive and
negative cases, respectively. Each point on the curve
represent a decision rule, out of which we can choo-
se according to our preferences. It is obviously the
best to choose a procedure as near to the upper-left
corner of the unit square as possible, as this misc-
lassifies the least number of cases.

It is seen on the figure, where the first panel shows
just the curve itself – for a simple simulation sche-
me –, with a nice colouring scheme, while the second
is based on the built-in function, and it also inclu-
des the diagonal (which belongs to an uninformative

decision system) and a smooth curve, which is the
theoretical ROC curve in the case, when both of the
populations have normal distribution with the para-
meters of the observed samples.

To produce the first curve we need the package ROCR,
which contains several other useful tools, which we
shall use in the next paragraphs. The second curve
was got by the package verification, which allows
for calculating the simulated confidence regions, as
shown by crosses on the previous figure.

nn<-50
x <- matrix(0,100,20)
t <- rep(0,times=100)
seed <- 12345
val <- c(rep(0,times=50),rep(1,times=50))
for (i in 1:50) x[i,] <- rnorm(20)
for (i in 1:50) x[i+50,]<-rnorm(20,0.5,1)
for (i in 1:100)
t[i] <- t.test(x[i,])$p.value

library(ROCR)
pred <- prediction(t,val,
label.ordering=c(1,0))
perf <- performance(pred,"tpr", "fpr")
sum(t[val==0]<0.5)/nn
sum(t[val==1]<0.5)/nn
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library(verification)
# CI by bootstrapping and fitted curve

par(mfrow = c(1,2))
plot(perf,colorize = TRUE)
roc.plot(val,1-t,main = NULL,

xlab = "False positive rate",
ylab = "True positive rate",
CI = T, n.boot = 100,
plot = "both", binormal = TRUE)

Accuracy is a similar notion, defined by the formula
TP + TN

P +N
.

Finally the lift values are also shown, which is for-
mally the lift of such a probability that we categori-
ze an observation as positive if it is indeed positive:
P (Ŷ = 1|Y = 1)/P (Ŷ = 1), which can be estimated
as

TP/P

(TP + FP )/(P +N)
.

It is analogous to the commonly used diagram of
precision vs. recall (this is defined as TP

TP+FN
), as it

is seen on the second panel of the next figure.

The figure was created by the following code.

par(mfrow = c(1,2))
plot(performance(pred,

measure = "lift", x.measure="rpp"))
plot(performance(pred,

measure = "prec", x.measure="rec"))

3.9. Simulations

Also for the parametric tests seen earlier, such quest-
ions may emerge, for which there are no theoretically
sound answers.

- Is the sample size big enough in order the u/t
test to be applicable?

- What is the real level of the test if the normality
is not exactly fulfilled?

In the next paragraphs we consider such a case, when
the sample is not normally distributed, to be more
specific, it has exponential distribution. The sample
size varies between 20 and 2000, and we investigate
the first type errors. In the simulations we recom-
mend to set the seed of the random number genera-
tor at the beginning, as this way the results will be
reproducible.

n <- c(20,40,80,150,300,500,1000,2000)
k <- 10000
ered <- matrix(10,k,length(n))

seed<-12345
for (i in 1:length(n))
{for (j in 1:k)

{xdat<-rexp(n[i]);
ered[j,i]<-t.test(xdat-1)$p.value}}

er5<-rep(0,times=length(n))
for (i in 1:length(n))
er5[i]<-sum(ered[,i]<0.05)/k

round(er5,3)

er1<-rep(0,times=length(n))
for (i in 1:length(n))
er1[i]<-sum(ered[,i]<0.01)/k

round(er1,3)

The code above generates 10000 simulated standard
exponential samples to each of the sample sizes and
stores the p-values of the t-tests. It is easy to de-
termine the empirical first-kind error probabilities,
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based on these values.

It can be seen that for smaller sample sizes there is
a substantial difference from the nominal (expected)
p-values and this deviation decreases to below 10%
only for sample sizes larger than 500.

In the next part we investigate the power function:
besides the case of λ = 1 (not only for the exponenti-
al, but also for the Poisson case), which corresponds
to H0, also distributions with EX = 1.1 are cons-
idered.

First we give the code, then the resulting figure.

ered<-matrix(10,k,length(n))
seed<-12345

for (i in 1:length(n))
{for (j in 1:k)
{xdat<-rexp(n[i],1/1.1);
ered[j,i]<-t.test(xdat-1)$p.value}}

ero5 <- rep(0,times=length(n))
for (i in 1:length(n))
ero5[i] <- sum(ered[,i]<0.05)/k

ero1 <- rep(0,times=length(n))
for (i in 1:length(n))
ero1[i] <- sum(ered[,i]<0.01)/k

# Poisson
n<-c(20,40,80,150,300,500,1000,2000)
k<-1000
ered <- matrix(10,k,length(n))
seed <- 12345

for (i in 1:length(n))
{for (j in 1:k)

{xdat <- rpois(n[i],1);
ered[j,i]<-t.test(xdat-1)$p.value}}

erp5 <- rep(0,times=length(n))
for (i in 1:length(n))
erp5[i] <- sum(ered[,i]<0.05)/k

erp1 <- rep(0,times=length(n))
for (i in 1:length(n))
erp1[i] <- sum(ered[,i]<0.01)/k

ered <- matrix(10,k,length(n))
seed <- 12345

for (i in 1:length(n))
{for (j in 1:k)

{xdat <- rpois(n[i],1.1);
ered[j,i]<-t.test(xdat-1)$p.value}}

erop5 <- rep(0,times=length(n))
for (i in 1:length(n))
erop5[i]<-sum(ered[,i]<0.05)/k

erop1 <- rep(0,times=length(n))
for (i in 1:length(n))
erop1[i] <- sum(ered[,i]<0.01)/k

par(mfrow=c(1,2))
erelm <- ero5
for (i in 1:length(n))
erelm[i] <-
power.t.test(n=n[i],delta=0.1,sd=(1.1),

sig.level=0.05,
type="one.sample",
alternative="two.sided",
strict = TRUE)$power

erelm1 <- ero5
for (i in 1:length(n))
erelm1[i] <-
power.t.test(n=n[i],delta=0.1,sd=(1.1),

sig.level=0.01,
type="one.sample",
alternative="two.sided",
strict = TRUE)$power

plot(n,er5,type="l",ylim=c(0,max(er5)),
main="Type I error",
xlab="Sample size",
ylab="Error prob.")

lines(n,er1,lty=2,col=1)
lines(n,erp5,lty=1,col=4)
lines(n,erp1,lty=2,col=4)
abline(h=0.05,col=3)
abline(h=0.01,col=3,lty=2)

legend("topright",
c("Exp.distr.,p=0.05",
"Poisson(1) distr., p=0.05",
"Theor. value (0.05)",
"Exp.distr.,p=0.01",
"Poisson(1) distr., p=0.01",
"Theor. value (0.01)"),

lty=c(1,1,1,2,2,2),
col=c(1,4,3,1,4,3),cex=0.7)
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plot(n,ero5,type="l",ylim=c(0,max(ero5)),
main="Power fct. simulated data",
xlab="Sample size",ylab="Power")

lines(n,ero1,lty=2,col=1)
lines(n,erop5,lty=1,col=4)
lines(n,erop1,lty=2,col=4)
lines(n,erelm,col=3)
lines(n,erelm1,col=3,lty=2)

legend("bottomright",
c("Poisson(1) distr., p=0.05",
"Exp.distr.,p=0.05",
"Theor. value s=1.1",
"Poisson(1) distr., p=0.01",
"Exp.distr.,p=0.01",
"Theor. value s=1.1"),
lty=c(1,1,1,2,2,2),
col=c(4,1,3,4,1,3),cex=0.7)

The theoretical value was got from the
power.t.test command of R. It can be seen from
the figure, that for the exponential case we might
need even 1000 observations in order to reach the
expected levels, for the Poisson case fewer are eno-
ugh to it. The really large deviations belong to the
cases with small sample sizes and small error proba-
bilities: in this case we may get even 2-3 times more
false rejection probability.

In the next part we investigate, in which cases it
is worth applying the Wilcoxon test instead of the
two-sample t-test. One of the samples is normal,
with expectation µ = 1.6 and variance σ2 = 0.06,
the other is a mixture of the same normal distribu-
tion and a Pareto distribution with shape α = 3. In
the simulation we investigate the effect of increasing
the Pareto-part on the power functions of the two
tests. We may conclude that as we move away from

the normal case, the more effective the Wilcoxon test
is as the next figure shows.
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Finally, let us see the program
that generated the above output.

al<-3
p <- c(0.002,0.01,0.05,0.1,0.2)
k <- 10000
n <- 500
eredt <- matrix(10,k,length(p));
eredw <- eredt

seed<-12345
for (i in 1:length(p))
{for (j in 1:k)
{xdat2 <- rnorm(n,al/(al-1)+.1,

sqrt(6/100));
xdat1 <- rnorm(n,al/(al-1)+.1,

sqrt(6/100));
xdat1[1:(n*p[i])]<-

(1/runif(n*p[i]))^(1/al);
eredt[j,i]<-
t.test(xdat1,xdat2)$p.value
eredw[j,i] <-
wilcox.test(xdat1,xdat2)$p.value}}

ert<-rep(0,times=length(p))
for (i in 1:length(p))
ert[i] <- sum(eredt[,i]<0.05)/k

erw<-rep(0,times=length(n))
for (i in 1:length(p))
erw[i] <- sum(eredw[,i]<0.05)/k

ert1<-ert
for (i in 1:length(p))
ert1[i] <- sum(eredt[,i]<0.01)/k

erw1<-ert
for (i in 1:length(p))
erw1[i] <- sum(eredw[,i]<0.01)/k

par(mfrow=c(1,1))
plot(p,ert,type="l",ylim=c(0,max(erw)),

main="Power function",
xlab="Proportion of Pareto",
ylab="Power")

lines(p,erw,lty=2,col=1)
lines(p,ert1,lty=1,col=4)
lines(p,erw1,lty=2,col=4)

legend("topleft",
c("Wilcoxon test,p=0.05",
"t-test, p=0.05",
"Wilcoxon test,p=0.01",
"t-test, p=0.01"),

lty=c(2,1,2,1),
col=c(1,1,4,4),cex=0.7)
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IV. Linear regression in R

The regression models explain the value of one target variable by the values of some explanatory variables.
The role of statistics in regression modelling is three-sided: first fitting the model, then checking the model
validity, finally interpreting the meaning of the constructed model. In this short section we discuss only the
linear regression models fitted by method of least squares. This model fitting technology is comfortable,
it has a nice geometrical interpretation, and the related statistics have a natural descriptive explanations.
Besides a short theoretical introduction we will explain the use of the stats::lm() method, and comment
its results.

4.1 Linear regression using the stats::lm() function 63.
4.2 Practical regression fitting 67.
4.3 The statistics, evaluating the model fit 75.
4.4 Some classical examples for the regression 79.

4.1. Linear regression using the stats::lm() function

We demonstrate the regression modelling at first on the data sets LifeCycleSavings and trees. The
application of these data sets facilitate that either are element of datasets package, which is a basic
supplementary package of the R system. Hence to use the data sets of this package it is not necessary to
install or load the datasets package. Namely the datasets package is one of the 27 packages installed
together with the R core program, and it is also one of the 7 packages which are loaded at the start of the
graphical R console, the Rgui. The ?LifeCycleSavings and ?trees commands provide facilities to gain
more information on the ancestry and explanation of these data sets.

The trees is a data.frame of size 31 × 3. Its three variables are ‘Height’, ‘Girth’ and ‘Volume’, for 31
black cherry trees. This data set originates from the handbook of the Minitab statistical program system,
(Minitab Student Handbook, 1976, pp 274).

The LifeCycleSavings is a data set (data.frame) with 50 observations on 5 variables. For each of 50
countries there are 5 variables, which are the following: "sr" – aggregate personal savings rate, "pop15" –
% of population under 15, "pop75" – % of population over 75, "dpi" – real per-capita disposable income,
"ddpi" – growth rate % of dpi in the sixties. The data set was collected by AG. Sterling in 1977, and
it was first published by DA. Belsley et al., 1980. The primal intention of the data collection was the
examination of F. Modigliani’s ‘Life Cycle Hipotesis’ from 1975: "The willingness for saving depends on
the age structure of the country."

:::::
4.1.1.

::::::::
Three

:::::::
simple

::::::::::
examples

::::
for

::::
the

::::::::::::
application

::
of

::::
the

:::::::::::
regression

:::::::
model

At first we concentrate on the fundamental applica-
tion methodology of the lm() function and on the
simplest results of it. At the moment we do not
investigate the validity of the model.

:::::::::
Example

:::
1.:

:::::
The

:::::
case

:::
of

::
a

::::::
single

::::::::::
regressor

:::::::::
variable

:

Copy the following command in the R console!
lm(sr∼pop15,data=LifeCycleSavings)

The systems’ response after the edited version of our
command is just the following:

(Intercept) pop15
17.497 -0.223

The concise interpretation of these results:
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In the investigated countries
the savings rate (sr) as the function
of the population percent under 15 (pop15)
is roughly 17.5-pop15/5 percent of the disposable

income.

Namely the observed savings rate decreases when
the proportion of young people increases. In a fic-
tional country without youth the savings are one
sixth (≈ 17.5) of the income. When the proportion
of youth is approximately equal to 1/3, then the
savings rate is one tenth (≈ 17.5 − 33.3/5) of the
income.

Look at the dependence of the savings rate on the
proportion of old people, by means of the following
command!
lm(sr∼pop75,LifeCycleSavings)

The new result:

(Intercept) pop75
7.152 1.099

The meaning of this is that the savings rate incre-
ases with the growing proportion of aged people in
the population. In a society without elderly the sav-
ings rate is around 7.2%. And each +1 percent old,
generate around +1.1 percent higher savings rate.

This result agrees with sociological ideas. But we
have only two independent models, and also lack
the statistical validation of the built models at the
moment. The results until now means only, that the
two foregoing models are separately the best linear
functions of the two population indicators, approxi-
mating the disposed savings rate. The examination
of the common impact of the two variables necessi-
tates the construction of a common model, based on
the two indicators.

:::::::::
Example

:::
2.:

::::::::::
Multiple

::::::
linear

:::::::::::
regression

:

If we intend to explain the savings rate by the two
population indicators (pop15, pop75) together, then
the results from the two one-dimensional model ef-
fects inevitably give a misrepresentation. We must
put the two explanatory variable in the regression
model at once !

Consider the essential part of the response to the
lm(sr∼pop15+pop75,LifeCycleSavings)

command:

Coefficients:
(Intercept) pop15 pop75

30.6277 -0.4708 -1.9341

The result is surprising: the 1% increase in the pro-
portion of youth decreases the savings rate by half
percent, the 1% increase in the proportion of elder-
lies decreases the savings rate by two percent!

This means, that if we take both population indi-
cators in our model at once, then the value of the
target variable decreases by the increase of either
explanatory variables!

Let us explain this more precisely. The savings rate
in a country is approximately 30-pop15/2-pop75*2
percent by the resulting formulae of our regression
model. Namely if we put the two variables together
in the model, then the size of the effect of the pro-
portion of young people is the double as in the case
of single variable regression model! And the effect
of the proportion of elderlies is not an increase, but
a decrease!

:::::::::
Example

:::
3.:

:::::::::::::
Polynomial

:::::::::::
regression

:::::::
model

The preceding inconsistent results suggest an additi-
onal investigation of the influence of the proportion
of population over 75. So we may get the idea of
modelling the savings rate by a polynomial function
of pop75. Notice, that the polynomials are linear
functions in its parameters (the coefficients). Hence
the lm() command also supports the fit of polyno-
mial models.

Let us use the
lm(sr∼pop75+I(pop75^2),LifeCycleSavings)

command! The important part of the results:

(Intercept) pop75 I(pop75^2)
5.9658 2.3997 -0.2608

We see that by this polynomial model the linear
effect of the proportion of elderly is again positive
and it has increased in absolute value, and the effect
of the square of the proportion of aged has a clean
negative effect! But this model building is nothing
else then guessing. It has neither economical nor
sociological foundations. Is is purely a result of a
calculation.
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In the case of our other data set, – the trees data
– the reason for the existence of the polynomial reg-
ression model is more natural. The appearance of
the dependence of the tree volume on the girth size
in a form of cubic polynomial is logical.

Isn’t that so?

Let us begin the analysis of the trees dataset!

Let our hypothesis be that the dependence between
the girth size and the tree volume can be approxi-
mated by the incomplete polynomial

y ∼ a+ b · x+ c · x3.

It lacks the quadratic term.

This model is fitted by the following lm() command:
lm(Volume∼Girth+I(Girth**3),trees)

The essential part of the results:

(Intercept) Girth I(Girth^3)
-3.919278 1.322529 0.006092

This result shows, that the volume of the tree can
indeed be represented by a polynomial having posit-
ive coefficient of the third power of the girth size.

But if we take a thinner tree, like one with a girth
of 2.8 inches, then the volume of the tree is negative
by the received formula ...

If we want that the model fulfills the zero intercept
condition also, then it is attainable by the
(M<-lm(Volume∼-1+Girth+I(Girth**3),trees))
command. The new coefficients are:

Girth I(Girth^3)
0.896578 0.006735

The numerical difference between the last two mo-
dels is notable only in the interval [0, 10].
But we can check by the command

summary(M),
that in this model all the coefficients and the whole
model are all statistically significant.
It is an accomplished model!

:::::
4.1.2.

::::::
The

::::::::::
graphical

:::::::::::::::
interpretation

::
of

::::
the

::::::::
simple

:::::::::::
regression

:::::::
model

In order to demonstrate the regression models, by a
backstep, at first we describe the dependence of the
volume and the girth size by the simplest polynomi-
al:

y ∼ a+ b · x.

In our case this formula means the following:

volume = constant1 + constant2*girth.size .

The above scheme can be interpreted and fitted in
R for the trees dataset by the commands:

y<-trees$Volume
x<-trees$Girth
(M<-lm(y∼x))

This command sequence defines the two used va-
riables for convenience, the trees$Volume and the
trees$Girth, as y and x respectively, and saves the
resulting object of the fit command lm() to the M
variable.

For a better understanding the nature of the data
and the fitted model let us plot the data set:

plot(x,y,pch=20,col="red")

By the coef() command we get the coefficients of
the fitted model from the M object, and we add a
blue line to our image, which corresponds to the
regression function:

abline(coef(M),col="blue")

The red points represent the trees and the blue line
represents the regression of the tree volumes on the
tree girth sizes. This blue line is the line, which is
the nearest to the points among all lines, if we use
quadratic distance from the data points, measured
vertically.

We show the predicted values in blue by the follo-
wing command:

points(x,predict(M),pch=8,col="blue")

Here we used the predict() method. This program
uses the M model variable only, and without a new
data set, it calculates the value of the fitted model
in the points of the original design matrix.

We can draw in green the distances, which were mi-
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nimised in squared-sum form by the
segments(x,y,x,fitted(M),col="green")

command.

Here we used that the fitted(M) call gives just the
same result as the predict(M) before.

Let us add to our figure the graph of the two former
approximating polynomials of degree three as well!

M3<-lm(y∼I(x^2)+I(x^3))
a3<-coef(M3)[1]
b31<-coef(M3)[2];b33<-coef(M3)[3]
lines(x0,a3+b31*x0+b33*x0**3)

M4<-lm(y∼-1+I(x^2)+I(x^3))

b41<-coef(M4)[1];b43<-coef(M4)[2]
lines(x0,b41*x0+b43*x0**3,col="cyan")

The first command section fits and draws in black
the polynomial of degree 3 without a quadratic term.
The second adds to the plot the result of the zero-
intercept version of the same polynomial in cyan.

The seven commands from above supplement the
earlier plot, and the result is the following:

Visibly the third degree polynomials provide a bet-
ter fit.
But it is really so?
How can we justify it statistically?
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4.2. Practical regression fitting

Till now we investigated different functions from the parametrized function set:

lm(y∼1+x+I(x**2)+I(x**3)).

The regression functions were chosen from the subsets of this four parametric, third degree polynomial
set. The last model was the two parameter function lm(y∼-1+x+I(x**3)), before it we fitted the three
parameter model lm(y∼1+x+I(x**3)), and the first was the two parameter lm(y∼x) model.
The full third order model, by four parameters surely fits our data better than all other models with fewer
parameters. Namely the parameter set of the latter are subsets of the full model.

At the same time, as it can be seen on the preceding plot, the two and three parameter third order poly-
nomial regression lines are not too different. The only question is: is it worthwhile to use one or two
additional parameters? The improvement in the fit by one or two extra parameters is really remarkable?
It seems easier to use a third order model! But apparently in the region of measurements the linear model
follows the measurements with equal accuracy as the higher order models. Is it worthwhile to take a more
complicated third order model?

Consequently the fundamental question is:

How can we resolve the problem of model validity?

:::::
4.2.1.

::::::
The

::::
four

::::::
basic

:::::::::::
questions

The general problem of model validity is decompos-
able into the following four elementary questions:

Question 1
The problem of error distributions. Are the errors
indeed realisations of independent random variables
having normal distribution with expected value 0,
and identical variance?

Question 2
The possibility of finding a broader, essentially bet-
ter model.

Question 3
The significance of parameters. It may be that
several parameters only accidentally differ from ze-
ro. Investigate the possibility of a narrower model,
which is essentially just as good.

Question 4
The problem of overfitting. We fit a model to a
concrete data set. It is feasible that the built model
describes the present data set, but how will it work
for other data sets?

———

Outline of the answers

:::::::::::::::::::
The first question.

This mission is insolvable.

Without repetition there are no answers to the quest-
ion of the dependence of two phenomena. Hence

there is no way to justify the independence of the
errors, for example of the first and second observa-
tions. The solidity of our answer is also weakened by
the doubtfulness of the condition of zero expected
value for each of the error variables. And it is si-
milarly difficult to prove that our observations have
identical dispersion.
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The only relatively easily solvable question to test
is the supposed normality of the observation er-
rors, assuming that they are values of independent,
identically distributed variables, with zero expected
value and equal dispersion. Some available tests for
normality are useful in the case, when one or other
conditions are not surely fulfilled. These tests are
sort of a portmanteau tests, which measure more
types of departures from the supposed properties at
once .

When we must drop the normality by a test of this
portmanteau character, then it may happen that
not the normality lacks, but the independence, or
the zero expected value, or both.

The normality and the other properties of the ob-
servations are important because without normality
and the other properties, the statistics used to ans-
wer other questions about the regression model do
not have the usual distribution, and in the case
of non-normality the common interpretation of the
classical statistics becomes inappropriate.

:::::::::::::::::::::
The second question.

This problem is interesting, since a model with more
explanatory variables is necessarily more accurate,
but the parameter estimates of a model with more
parameters are necessarily less accurate.

If we use very many parameters in our model, then
the produced model is typically an interpolation of
the values of the target variable. The saturated mo-
del fits the data without error. This interpolation
character appears beyond a certain number of para-
meters, and such a model for random observations
depends too much on the random noise of the actual
measurements.

Fortunately when we investigate two models, where
one is wider and the other is narrower, it is easy
to check, whether the broader is substantially bet-
ter or not. The obvious instrument is the standard
deviation of the errors in the two models. By this
idea we measure the explanation power of a model
by the empirical value of the model error variance,
more accurately: by the value of the residual sum of
squares (RSS).

We accept the broader model if in that case the sum

of squares of errors (the RSS) is significantly less then
the sum of squares (RSS) in the narrower model.

In case of hierarchical models this technique limits
the growth of the parameter set.

The least or minimal model consists of only one pa-
rameter: the mean value of the target variable. By
the minimal model we assume, that the values of the
target variable equal to a constant which does not
depend on chance, plus a random error with zero
expected value.

Comparing all models to the least model, – inclu-
ding the regression models – defines a hierarchical
scheme. At first we always evaluate the relation of
these two hierarchical models: the ‘regression mo-
del’ and the ‘least model’. We investigate, whether
the ‘regression model’ is significantly better than the
‘least model’ fitted to the same dataset or not.

The ‘regression’ and the ‘least’ model together forms
the shortest model chain. Subsequently we elonga-
te the chain by inserting more models between the
maximal and minimal models. We leave as maxi-
mal model the regression model, and insert one or
more models in the chain by subsequently deleting
variables from the full model. Next we evaluate the
adjacent pairs of the model chain, by the technique
of pairwise comparisons. Finally we stop at the first,
which is significantly worse then the preceding more
abundant.

This stepwise constructed model is optimal only
with respect to the chosen hierarchical model chain.

::::::::::::::::::::
The third question.

The answer to this question is the simplest, but
substantial.

It may happen that in the selected and fitted mo-
del there are parameters which values do not differ
statistically from zero. The needless parameters da-
mage the accuracy of other significant parameters.
Hence it is important to erase these surplus parame-
ters.

But this is one of the most pleasing work!

When the conditions are fulfilled, then the common
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t-statistic is adequate. Hence we are able to delete
the needless parameters one by one.

:::::::::::::::::::::
The fourth question.

The meaning of this question is for example the fol-
lowing. If anybody brings some new black cherry
data, and we apply the model fitted to the original
dataset, then if our model is a fair model, which isn’t
overfitted, then the fit of the model (the residual sum
of squares) on the new dataset is approximately the
same as to the original dataset.

Seldom exists an exact solution to a problem of this
kind, because we rarely receive enough new, inde-
pendent data from the same setting.

Hence we must simulate the existence of the new da-
ta. We must use tricks. There are many techniques

and knacks. But if we have too few ‘proper’ data,
then the reliability of these proxy methods is very
low.

It is a plausible way to divide the data in two parts.
And at first we fit the model to one part of the data.
And afterwards we may validate the fitted model by
the other part.

Another possible method is first fitting the model
to the full data set. The fitted model decomposes
every single observation in two parts: the predicted
value and the estimated error. And afterwards we
simulate new data by a random matching of the ob-
served predictions and the errors.

In the control step we fit the previous model to this
artificial data. And finally we compare the errors of
the original and the simulated model.

———

Finally three further remarks
related to model validity.

# In the situation of model fitting two different
problems may occur. In the first type of cases we
know the subclass of the valid regression function,
only the actual parameter values are unknown. In
the second one, we choose the subclass by the avai-
lable data and estimate its parameters as well.

# In relation of the model validity we have to re-
mark that the positive answers to the four previous
questions do not prove anything in a mathematical
sense, they are simply results of an investigation. A
mistake is possible. The result of an investigation

can state at best, that ‘by the available data, by the
tested models... our outcome is ...’.

# The size of our data set is always a relevant fac-
tor. And it is also important that the fitted model
should be interpretable for the given data set.

In the case of our example data set trees, if we fit a
model, which implies that the growth of the volume
is quicker than a linear function of the girth, then
this means that a greater tree has a relatively thicker
girth. Consider, are we able to give one reasonable
explanation to this behaviour, or not?

:::::
4.2.2.

::::::::::
Answers

:::
to

::::
the

::::::
basic

::::::::::
questions

:::::
with

:::::
the

:::::
help

::
of

::::
the

::::::
lm()

:::::::::::
procedure

The simplest way to answer the four question is
- first fit a model by the lm() procedure
- then evaluate the results, by the summary() function.

Let us use the black cherry dataset once more! Use the model

V = a+ b ∗G+ e

where e is the value of the random error, which
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are assumed to be independent and distributed nor-
mally, with zero mean and unknown, constant stan-
dard deviation.

The suitable command compressed in one line:
summary(lm(trees$Volume~trees$Girth))

The result of the function summary.lm() here con-
sists of four sections:

1.) confirmatory print out of the calling sequence
2.) statistics of the estimated errors of the model
3.) the coefficients of the fitted model and their
statistics
4.) the statistics evaluating the fitted model.

The actual results:
Call:
lm(formula = trees$Volume ~ trees$Girth)

Residuals:
Min 1Q Median 3Q Max

-8.0654 -3.1067 0.1520 3.4948 9.5868

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
trees$Girth 5.0659 0.2474 20.48 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.252 on 29 degrees of freedom
Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

Let us interpret the printed results backwards!

::
In

::::
the

::::::
(last)

::::::::
fourth

:::::::
section

you find five statistics.

On the basis of these statistics it is possible to decide
about the validity of the model.

* The ‘residual standard error’ is the estima-
ted standard deviation of the e errors. It is calcu-
lated from the residuals of the fitted model.

* The ‘degrees of freedom’ means the degrees of
freedom of the estimated residual standard error. In
our case it is 29 = 31 − 2, because there were 31
cases and we estimated 2 parameters.

* The ‘multiple R-squared’ is the square of the
empirical correlation of the target variable and of
the approximating variable determined by the regr-
ession method. Its common notation is R2. By an

other interpretation it is the explained proportion of
the variance of the target variable. The ‘adjusted
R-squared’ is a modified value of R2. If we investiga-
te two hierarchical models, then the adjusted version
of R2 isn’t necessarily monotonically increasing, whi-
le R2 is.

* The ‘F-statistic’ is essentially the quotient of
two empirical variances. More precisely, it is a stan-
dardised ratio of two sums of squares: the sum of
squares of the fitted values, and the sum of squares
of the residuals. This statistics indicate whether the
regression model is intrinsically better as the (narro-
wer) constant-mean (minimal) model, or not. This
statistic has an F1,29 distribution when the minimal
model is the valid model of the data.

* The last statistic is the ‘p-value’ of the
F-statistic. It is a transformed version of the
previous F-statistic. When the minimal model
(the least) is the proper model of our data, then it is
U([0, 1]) distributed. It is small when the regression
model is the proper model and large in the case of
the least model. At present it is small: the fitted
regression model is significantly better than the mi-
nimal model.

::::
The

::::::
third

::::::::
section

is under the heading ‘Coefficients’

Here you find the estimations of model parame-
ters (see the ‘Estimate’ column) and the statistics
to evaluate the results. The simplest approach is to
consider only the p-values in the ‘Pr(>|t|)’ column.
The stars at the end of the rows mark the decision
result of the hypotheses about the coefficient. The
stars in our table signs that the calculated coeffici-
ents significantly differ from zero.

::::
The

::::::::
second

:::::::
section

under the title ‘Residuals’.

Five statistics describe the distribution of the est-
imated residuals: minimum, maximum, median, the
first and the third quartile. Broadly speaking it is
the same as the result of the fivenum() command:
the Tukey Five-Number summary.

::::
The

:::::
first

::::::::
section of print

gives the edited version of our call.
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:::::
4.2.3.

:::::::::
Answer

:::
in

::::::
short

Verbal evaluation of the printouts of the summary(lm()) procedure used for the black cherry data.

The used command:

summary(lm(trees$Volume~trees$Girth))

"The calculated regression model is a valid model.
In the last line the small p-value of the F -statistic shows that the error of the
regression model is significantly smaller than the error of the minimal model.
The estimations of the Intercept and of the coefficient trees$Girth can be
used, since the p-values of the t-statistic are small. It means that the two
calculated parameters are significantly different from zero. The skewness, ma-
nifesting the difference of quartiles and the median value 0.15, is negligible at
a standard error 4.3 and at the range 17.65, calculated from the minimum
and maximum. So the asymmetry of the residuals is unimportant, hopefully
the deviation of the distribution of the errors from the normal distribution is
inessential."

"Thus, by the trees data, in the case of black cherry trees, if we investigate
the linear dependence of the volume of the wood material in the tree, on the
girth size, we get the following approximating equation:

wood volume = -36.9 + 5*girth size + error,
where the mean value of error is 0 and its estimated standard deviation is 4.3."

Comment:
In the next point we deduce that both from a practical viewpoint and from physical
considerations, — and statistically, too — the result of the

lm(trees$Volume ∼ −1 + I(trees$Girth ∗ ∗2) + I(trees$Girth ∗ ∗3))
command provides a better model.

:::::
4.2.4.

::::::
The

::::::::::
graphical

:::::::::::
evaluation

:::
of

::::
the

:::::::
model

::::::
errors

We introduce some simple graphical methods for analysing the residuals (i.e. the lengths of the line
segments, shown by green dashes in the previous plot).

Let us consider the previously analysed cherry-tree
model and save the fitted model to the variable M by
the help of the

M<-lm(Volume~Girth,trees)
command!

First we check the normality of the residuals of the
model by the command qqnorm().

The previously in green plotted residuals can be got
from the fitted model by the residuals() function.

So the following combination of commands:
qqnorm(residuals(M))
qqline(residuals(M))

gives the QQ plot of the residuals from the regressi-
on.
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The line on the plot is the result of the second com-
mand. It is determined by the first and third quartile
of the residuals. As it can easily be checked, this is
the line through the 8th points from the left and the
right, as we have 31 points on the plot.

When evaluating the figure, we must check if the
points on the QQ plot deviate significantly from this
line.

The x coordinates of the points are the quantiles
of the standard normal distribution, while the y co-
ordinates are the empirical quantiles of the residuals.

Based on the plot, we may get the conclusion that
the hypothesis of the normality can be accepted, as
the points essentially lie on a straight line.

In the univariate case like ours, it is a natural idea to
create a two-dimensional plot, where the x coordi-
nates of the points are the values of the explanatory
variable, while the y coordinates are equal to the
error of the regression in the corresponding points.

In our case we may get such a plot by the command
lines

x <- trees$Girth; y <- residuals(M)
plot(x,y)
abline(h=0)

It can be seen that ‘there is a problem’ with the used
model. For the intermediate values of the explana-
tory variable the errors are mostly negative, while
for its small and large values these are rather po-
sitive. So in our case this figure-type looks useful
for diagnostic purposes. It shows something that
cannot be seen on the statistics of the summary()
and which is hard to spot on the previous plot either.

But it is not usual to use this plot.

Since in the multivariate case, when we have not
one, but several explanatory variables, we would ha-
ve as many figures as explanatory variables. And
one cannot compare this figures, as it can easily be
the case that the seemingly unexplained effect on a
diagram is just the effect that is explained by the
other variables.

But if we plot the points, for which the y coordinates
are still the residuals, but the x coordinates are the
forecasted values of the target variable – instead of
the values of the explanatory variables –, we get a
very useful diagram.

So let us consider the plot created by the commands
plot(fitted(M),residuals(M))
abline(h=0)
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As we can see, in the univariate case (when we have
only one explanatory variable), only the scale of the
x axis has changed, as the forecasts are linear func-
tions of the previously used values.

But if we use this diagram in the multivariate ca-
se, then the y coordinates (the heights) remain the
same, only the x coordinates (including their order)
change. This permutation usually does not corres-
pond to the order of any of the explanatory variables.
The shown diagram contains a green curve as well,
which is created by the lowess() smoothing of the
points. This part of the plot can be got by the fol-
lowing command:

panel.smooth(fitted(M),residuals(M))

The curve we got this way is sometimes called local
regression. Unfortunately the detailed description of
this interesting method is beyond the scope of this
note, so we just give a short explanation.

What we see as a line on the diagram, is actually a
sequence of points, calculated at exactly the same x
points, where the residuals are plotted. The points
of this point sequence is got by fitting an approxima-
tion polynomial to the red points near to the actual
point (base) – and then take the value of the fitted
polynomial in the given base point.

When fitting the polynomial, the distance of the red
points from the polynomial is weighted by a decre-
asing function of the distance of the red point and

the actual base point (measured on the x axis).

This graphical interpretation of the residuals sug-
gest, that it may be worth trying to approximate
the wood material of the tree by a higher polynomi-
al of its girth.

So let us calculate the regression of the wood ma-
terial by a third order polynomial of its girth and
consider the same diagnostic plot of the resulting
errors.

y<-trees$Volume;x<-trees$Girth;
(M3<-lm(y∼x+I(x**2)+I(x**3)))
plot(fitted(M3),residuals(M3))
abline(h=0)
panel.smooth(fitted(M3),residuals(M3))

The diagram shows that the model probably cor-
rectly estimates the volume of the wood material.
The error (namely that the estimations are low for
the average values and high for those differing from
the average) seen on the previous plot has diminis-
hed.

However, when investigating if the errors of the mo-
del have the same variance for all observations, then
we see that the error variance is likely to be substan-
tially larger in the middle of the data range than at
the ends of it.
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A final remark

The errors shown on the previous plots are estima-
ted values with different variances. Thus in case of
more sophisticated investigations not the raw errors,
but their standardized versions

rSTA =
e

s
√

1− h
are to be plotted on the y axis of this diagnostic
diagram (as we shall see when investigating the di-
agnostic statistics; h is the so-called leverage effect,
compensating for the fact that residuals far away
from x̄ have a smaller variance, due to the applied
least-square methodology).

This modification resulted in our case in just a very
small difference from the previous plot, as it is seen
from the next diagram.

The reason of this phenomenon is that the 1/
√
1− h

statistic used at the modification (where h is the va-
lue of ‘hat’) differs from the rest only for the first 3
and the last 1 observation.
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4.3. The statistics, evaluating the model fit

The fitted basic assumption of the Y = Xβ + ε linear model is that the ε1, ..., εn errors, corresponding to
the individual observations are:

- normally distributed;
- having zero expected values;
- having identical standard deviation.

In order to simplify the command lines let us extract the important variables from the source data.frame
and save the fitted model and its summary statistics to the M and ST variables:

y<-trees$Volume;x<-trees$Girth;
(n<-length(y)); (p<-2)
(M<-lm(y∼x)); (ST<-summary(M))
(m<-mean(y));(yh<-fitted(M))

:::::
4.3.1.

::::::
The

:::::::::::::::::::::::::::::::
‘Residual standard error’

:

We may think– based on our previous experi-
ences – that the already introduced ‘Residual
standard error’, which is the fourth element
of the summary(M) is the same as the result of
sd(residuals(M)).

But in our case this gives instead of the expec-
ted 4.252 a value of 4.181 – as it is seen from
summary() –, and the difference is larger than any
possible rounding error.

The sd() function computes the empirical variance
from the corrected empirical variance. This means
that before computing the square root, the sum of
squares of the difference between the observations
and their average is divided by n − 1, where n is
the number of observations. The reason for it is the
fact that this way the estimation is computed from
the unbiased estimator of the variance, assuming
that these deviations are independent and the single
linear dependence among them is that their sum is 0.

But in our case we must give an unbiased estimator
for the error variance by two n dimensional points,
where one of them is arbitrary (the y), but the ot-
her – while being n dimensional as well– lies in a p
dimensional subspace (this is the ŷ, the regression
– i.e. projection – to the p dimensional subspace
spanned by x)

Thus the line segment that is between our two points
(y and ŷ) and upon which length we intend to est-

imate the variance, is in reality only an n−p dimen-
sional line segment. So when calculating the length
of it, we must take this dimensionality into account,
thus it must be divided by n − p. In fact the same
phenomenon is the reason why we should divide the
squared distance by n− 1.

In our case we consider the residuals of a fitted two-
parameter model, so the correct divisor for ensuring
the unbiasedness of our estimator is 31− 2 = 29.
Considering this fact, if we use for estimating the
regression error standard deviation the formula

sd(residuals(M))*sqrt(30/29)
then the result coincides with the previously seen
value of ST$sigma=4.252.

It is worth noting that while the square of the result
is an unbiased estimator of the variance, the number
itself is not an unbiased estimator for the standard
deviation.

:::::
4.3.2.

::::::
The

:::::::::::::::::::::::::
‘Multiple R-squared’

:

R2 is indeed the squared correlation between the
measurements and the forecasts as the value of

cor(y,fitted(M))**2
is ST$r.squared=0.9353, which is the same as the
value in the table of summary(M ).

The value of R2 can be got by the formula
var(fitted(M))/var(y)
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as well. This is a consequence of the fact that we for-
med the ratio of the forecast vector and the original
target vector and in these estimators the sums were
divided by n−1 and these denominators cancel each
other out. The result without the denominators is

s2pred<-sum((fitted(M)-m)^2)
s2orig<-sum((y-m)^2)
s2pred/s2orig

which explains why is R2 called explained total-
deviation proportion, too.

In the last formula we have used that the mean of
the fitted values is the same as the mean of the tar-
get variable i.e.

round(mean(fitted(M))-mean(y),12)==0).

It is worth noting that we also have
round(mean(residuals(M)),12)==0

(allowing for numerical inaccuracies). As the vector
of the residuals is orthogonal to the 1 = (1, ..., 1)
vector. Thus we have that the average of the residu-
als is 0. The same is true for the weighted average:

sum(residuals(M)*x)==0,
as the residuals are also orthogonal to the x vector.

If we have more explanatory variables, then the res-
iduals are also orthogonal for their n dimensional
vectors, so there are as many different zero-valued
linear combinations of the residuals, as many expla-
natory variables.

This implies that the degree of freedom for the res-
iduals of a regression with p parameters is exactly
n − p. This can also be proven by the earlier ar-
gument: the residual after the projection is in the
orthogonal subspace to the p dimensional subspace
generated by the (1, x, ...) vectors.

Caution!

The same formula, written by the var() functions
can easily be misunderstood. It seemingly explains
the alternative, but not exact name of the R2, being
the explained variance-proportion. This name is in
error, as we have already shown that from the two
variances the one in the numerator is actually not an
unbiased estimator of the variance of the forecasted
values by the regression.

:::::
4.3.3.

::::::
The

::::::::::::::::::::::::
‘Adjusted R-squared’

:

The formula of the adjusted R2 is

1−(1−R2)
n− 1

n− p
,

which means in our case:
1-(1-ST$r.sq)*(n-1)/(n-p)

by the following logic.

We have already seen that R2 is the explained
deviation-proportion. This means that 1 − R2

can be understood as the non-explained deviation-
proportion. As we had n observations and by this
we have estimated p parameters, this non-explained
deviation-proportion can be considered as based on
n−p ‘free’ observations. Thus, (1−R2)/(n−p) is the
non-explained deviation-proportion for a single ob-
servation. But in fact we have n−1 free observations,
so the total non-explained deviation-proportion is
(n − 1)(1 − R2)/(n − p). This implies the previous
formula.

The adjusted R2 is by definition smaller than R2. A
negative value shows that the model is overfitted,
i.e. that we have used too many parameters in the
regression.

The adjusted R2 (abbreviated: adjR2) has the ad-
vantage over R2 that it is not monotonic.

If we increase the number of parameters in the mo-
del, then R2 is increasing, but the adjusted R2 not
always, as in the denominator of the formula there
is the p, which is the number of parameters. If p
becomes as large as approximately n, then the mul-
tiplier of -(1-R2) in the formula of adjR2 can be as
large as n-1, so the value of adjR2 can decrease to
2-n. On the other hand, if we approximate y by a
constant, then p=1, and the value of adjR2 is equal
to R2, thus non-negative. It proves that there is a
p value (number of parameters), for which adjR2 is
maximal.

So if we must decide which model to choose from
a hierarchical increasing set of models, then it is a
sound method to choose the largest model, for which
the adjusted R2 is larger than for the next narrower
model.
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:::::
4.3.4.

::::::
The

:::::::::::::
‘F-statistic’

Briefly, we may define the F statistic as the ratio of
the variances of the minimal model and the regr-
ession model. But it is just approximatively valid.
Namely, when the minimal model is true, then we
intend to get a quantity with F distribution. To this
we need the quotient of two independent variance
estimators. But the current estimators are not inde-
pendent.

However, when we take not the variance estimators
of the models, but the total squared errors, then
the total squared error, belonging to the regression
model and the increase between the regression mo-
del and the minimal model are already independent.
Thus, when we normalise the total squared error
and the difference of the two total errors with their
respective degrees of freedom, then if the minimal
model is true, then their ratio
(s2pred/(p-1))/((s2orig-s2pred)/(n-p))

will have F distribution, as it can be seen from the
result of the printout summary(M) command.

But the formula can be simplified, as in the n di-
mensional space the point y corresponding to the
observations, the yh := ŷ point, corresponding to
the regression estimator of the target variable and
the (m := ȳ, ..., ȳ) point of the space diagonal forms
a right angled triangle.

Thus the Pythagorian theorem implies that the
sum((y-m)**2)-sum((m-yh)**2)

equals to
sum((yh-y)**2).

Thus the difference between the squared total sum
of the m minimal model and the yh regression model
is sum((yh-y)**2), which is in fact the squared to-
tal error of the regression model, and its degree of
freedom is p-1.

Thus in our case the increment has p−1 = 1 degree
of freedom, the degree of freedom of the squared
error of the regression model is n−2 = 29, and the
given, by the summary(M) printed ST$fstat statistic
has a value of = 419.4, which can also be calculated
as the result of the command

sum((yh-m)ˆ2/(p-1))/sum((y-yh)ˆ2/(n-p))

:::::
4.3.5.

::::::::::::::
Interpreting

::::
the

::::::::::
‘p-value’

The last element in the printout of summary(M)
is the p-value, which is based on the fact that the
distribution of the F statistic is F1,29 if the mini-
mal model is true. Its value can be got by the
1-pf(ST$fstat[1],1,29) command. In our case it
gives 0 – as the used functions have restricted punc-
tuality.

If the minimal model is true, then the p-value has
U([0, 1]) distribution. However, if not the minimal
model is true, then the Fstat value is large, so the
p-value will be small.

It can be seen that we get an optimal method e.g.
on the 5% level, if we choose as critical set if the
p-value is in [0, 0.05]. I.e. we reject the validity of
the minimal model if the p-value is smaller than 5%.

However, it is important to interpret the rejection
of the null hypothesis correctly. We cannot say that
the probability of the null hypothesis is small, just
that the data show too big deviations from the ones
expected under the minimal model, towards the al-
ternative hypothesis.

Thus the probability that in case of the validity of
the minimal model, taking also the alternative hy-
pothesis into account, the observed deviation (exp-
ressed as the Fstat value) would be greater or equal
the current one, is too small.

:::::
4.3.6.

::::::
The

:::::::::::::::::
‘Coefficients’

::::::
table

In the 4-column ‘Coefficients’ table the estimated
parameters of the fitted models and the statistics for
their checking are to be found.
The four columns are the following:

1. the estimators for the coefficients
of the regression;

2. the estimated standard errors
of the estimated coefficients;

3. the t-values
of the estimated coefficients;

4. the p-values of the t-statistic.
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To the interpretation of the ‘Coefficients’ column,
let us briefly recall the general results for the regr-
ession, based on the least squares method!

Let us write the values of the target variable to the
Y vector with n rows. and the values of the explana-
tory variables, completed with a column containing
a vector of 1s to the X matrix of size n × p. Then
the regression model is Y = Xβ + e, where e is a
vector of length n, containing the actual values of
an independent, N (0, σ) distributed ε error vector.

Using the notations above, the estimator of β by
the least squares method, based on Y and X
is β̂ = (XTX)−1XTY . The covariance of β̂ is
σ2(XTX)−1 and σ̂2 = ||Ŷ − Y ||/(n − p) is a va-
riance estimator, independent from β̂. From this
follows, that if one of the components of β is zero,
then its estimator, normalised with its own standard
deviation, has the tn−p distribution.

Based on the reasoning above, one can test by the
p-values in the fourth column of the table the hypot-
hesis that the estimated parameter has a significant
deviation from 0. The second column contains the
estimated standard error of the estimators in the
first column, while in the third column the ratio of
the two numbers from the first and the second co-
lumn can be found.

These briefly summarised statements about the prin-
touts can be checked by a short sequence of com-
mands:

X <- cbind(1,x);
Y <- as.matrix(y)
n <- nrow(X);
p <- ncol(X)
cn <- c("Summary","Calculated")

est <- cbind(ST$coe[,"Estimate"],
(b <- solve(t(X)%*%X)%*%t(X)%*%Y) )
colnames(est)<-cn

est # coef estimators -----------------

Yh <- X%*%b
V<- solve(t(X)%*%X)*sum((Y-Yh)^2)/(n-p)
# vcov(M) # would be the same
ste <- cbind(ST$coe[,"Std. Error"],
(se <- sqrt(diag(V))))
colnames(ste)<-cn

ste # standard errors -----------------

tva <- cbind(ST$coe[,"t value"],
(tval <- b/se))
colnames(tva)<-cn

tva # t-values -----------------------

pva <- cbind(ST$coe[,"Pr(>|t|)"],
2*pt(abs(tval),n-p,lower=FALSE))
colnames(pva) <- cn

pva # $p$-values of the estimators ------

The statistics of the fourth part can be checked just the same way as we have checked the statistics of the
third part. E.g. by using the following commands:

# --
# a "Residual standard error"

ST$sigma
sqrt(sum((Y-Yh)^2)/(n-p))

# --
# a "Multiple R-squared"

ST$r.squared

(R2 <- cor(Y,Yh)^2)
var(Yh)/var(y)
m <- mean(y)
sum((Yh-m)^2)/sum((y-m)^2)

# --
# az "Adjusted R-squared"

ST$adj.r.squared
1-(1-R2)*(n-1)/(n-p)
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# --
# Fstat 2 degrees of freedom

ST$fstatistic
fst <- sum((Yh-m)**2/(p-1)) /

sum((Y-Yh)**2/(n-p))
c(fst,p-1,n-p)

# --
# there is no p-value for Fstat

# neither in M nor in ST
# only in the actual printout
# the p-value of the F stat
# 1-pf(fst,p-1,n-p)

This latter p-value is not contained in the result
of the summary() function, which is an object of
class "summary.lm". In our case its value is 0, due
to the rounding and the difference from the prin-
ted p-value is only due to the specialities of the
print.summary.lm() function.

4.4. Some classical examples for the regression

To demonstrate the impossibility of automatic model evaluation we present four classical examples.

In point 4.1) we present the example of F.J. Anscombe. The dataset constructed by Anscombe consists of
four artificial subsets, for which the ‘classical’ diagnostic statistics are identical, but the fitted linear model
holds essentially in the first case only. In point 4.2) we show Huber’s data, which demonstrates that the
more sophisticated tests can also be erroneous. Even the tests activated by the influence.measures()
command detect substantial influence for this artificial data, where there is no such effect. In point 4.3)
we discuss the test data of J.W. Longley. This dataset is a classical break test instrument for regression
fitting algorithms. From a technical point of view the most delicate step in the regression procedure is the
inversion of the XTX matrix, where the X matrix is the matrix of the given values of the explanatory
variables. Here the classical problem of ‘multicollinearity’ appears, because there is a strong correlation
between the explanatory variables. In the point 4.4. we present a more complex model built for the dataset
by J.O. Irwin. This is a specialized technique for the case when we must transform the target variable. But
this example is very instructive also from the viewpoint of model validity. Here the diagnostics produces
strange results, too.

:::::
4.4.1.

::::::
The

:::::::::::
Anscombe

:::::
data

F.J. Anscombe published this artificial data set in
1973. This includes four (x, y) observations of length
11, for which the regression of y on x is the same
in all cases. At the same time the standard devia-
tion of the y variables, the error of the regressions
and the estimated covariance is the same. However...

The dataset can be found within R-in the anscombe
object of the datasets library. This is a data.frame
of size 11×8, the name of the variables are x1, x2,
x3, x4 and y1, y2, y3, y4, respectively.

A linear model can be fit to the first pair e.g.by the
command

(M1<-lm(y1∼x1,anscombe))
As a result of this command and the corresponding
ones to the further three data pairs:

(M2<-lm(y2∼x2,anscombe))
(M3<-lm(y3∼x3,anscombe))
(M4<-lm(y4∼x4,anscombe))

we can see that the intercept of the regression is in
all four cases, 3, while its steepness is 1/2.

If we apply the summary() function to the previo-
usly calculated M models, like this

summary(M1),
then the results show that the standard error of
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the parameter estimates is always 1.125 and 0.118,
respectively. and the residual error is 1.237 in all 4
cases, and the value of R2 is 0.6662. This implies
that all of the other statistics are equal, too. Except-
ions are the 5 Huber-type numbers of the residuals:,
including the error median.

On the following plots one can see the points of the
artificial test data sets and the lines fitted by regr-
ession methods:

This plot can be constructed by the following sequ-
ence of commands:

par(mfrow=c(2,2),mar=c(1,1,1,1))
xy<-c(0,4)
plot(anscombe[xy+1]);abline(coef(M1))
plot(anscombe[xy+2]);abline(coef(M2))
plot(anscombe[xy+3]);abline(coef(M3))
plot(anscombe[xy+4]);abline(coef(M4))

It can be seen that from the data sets, that the first
is the only one, which can be assumed to have been
realised, as it is claimed in the statistical conditions
of the linear regression model.

In the second case it would be better to approximate
the y values with a polynomial of degree 2 of the x
values. The third data set includes an outlier, whi-
le in the fourth case the x variable looks as being
discrete (its two actually observed values are 8 and
19).

———

:::::
4.4.2.

::::::
The

:::::::
Huber

:::::
data

This is a dataset of minimal size, where the diagnos-
tic statistics detect outliers, including an effective
measurement.

The size of the dataset is 6.
At first we write the data in the (xh, yh) variable

pair.
Then we fit a linear regression by the method lm()

and evaluate the model, by the summary() com-
mand.
Finally we check the result of the method

influence.measures(), and we mark by red colour

those cases, which were qualified as ‘critical’.

xh<-c(-4 ,-3 ,-2 , -1 , 0 , 10)
yh<-c( 2.48, 0.73,-0.04, -1.44, -1.32, 0)
summary(lmH <- lm(yh ~ xh))
(im <- influence.measures(lmH))
plot(xh,yh,main=
"Huber’s dataset")

abline(lmH);
points(xh[im$is.inf],yh[im$is.inf],

pch=20,col="red")

When we perform the above commands, then the
result is the plot below:

MMXVI 80



IV. Linear regression in R

On the plot you see the "normal" data points in
green, and the two ‘outliers’ in red. Obviosly the
right extreme is the only outlier.

———

:::::
4.4.3.

::::::
The

::::::::
Longley

::::::
data

J.W. Longley published in 1967 the data, which is
available in the datasets library under the name
longley. Its size is 16 × 7. The data are the mac-
roeconomical descriptors of the US from the years
1947-62, as follows: (1.) GNP.deflator - implicit pri-
ce deflation based on 1954; (2.) GNP- gross national
product; (3.) Unemployed - number of unemployed,
in 100 000; (4.) Armed.Forces - number of people
serving at the army, in 100 000; (5.) Population -
population of at least 14 year old, in million; (6.)
Year - year of the investigation; (7.) Employed -
number of employed people, in million.
Longley used this data set for checking the power
of the computers, programs and algorithms of the
1960s. It is still a famous test data set, as its deter-
minant is nearly 0, since the data is strongly corre-
lated. This can be seen from the results of the next
commands.

X<-as.matrix(longley)[,-7]
det(t(X)%*%X)
round(log10(eigen(t(X)%*%X)$va),1)
round(cor(X),3)

The first command saves the data ‘longley’ into the
matrix X except the last one, the number of emp-
loyees, which is the target of our modelling. The se-
cond shows that the determinant det(XTX), which

is crucial for the numerical stability of the regression,
has a size of 1024. The result of the nest command
shows that the logarithms of the eigenvalues of the
matrix XTX are 7.8, 5.3, 5.0, 4.3, 1.4, 0.3
– these are important for the properties of the ite-
rative methods. The last gives that from the 15
correlations between the pairs of the explanatory
variables 5 are larger than 0.99!

In spite of these bad signs the above variables ha-
ve quite good explanatory power for the Employed
variable. This can be seen from the results of the

M<-lm(Employed ~ ., data = longley)
summary(M)

commands.
It is worth checking, how the result changes if we
omit variables from the model:

SM <- step(M);summary(SM)

These changes in case of omitting the variables one
by one can be checked e.g. by calling the function
drop1(M). Otherwise also this drop1() function is
used by the function step() to decide, which vari-
able can be omitted, and which is worth omitting
without substantially decreasing the explanatory
power of the regression while improving the infor-
mation criterion.
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:::::
4.4.4.

::::::
The

::::::
Irwin

::::::
data,

::::::::::::
generalised

:::::::::::
regression

W. Smith investigated in 1932, what proportion of
mice is saved by an anti-pneumococcus serum from
becoming ill in a culture of 17 hours. J.O. Irwin
used the part, called S32 of this experiment for in-
terpreting a special regression method in 1937.

In this experiment 40-40 mice were treated with a 1-
5-times dose of the tested serum, and all 5 ·40 = 200
mice were exposed to the same level of infection.
It was assumed that the probability of protection
in the groups is a px ∈ [0, 1] value, which depends
on the dose got. They wanted to determine the de-
pendence of the number of protected mice on the
logarithm of the dose.

The S32 data:

dose 1 2 3 4 5
investigated 40 40 40 40 40
protected 0 2 14 19 30

Let us suppose that the survivals for the dose x is
yx and that the probability px of the reaction in the
mice is independent from each other, but depending
on the dose x. This implies that under dose x from
40 mice, the survival probability of exactly y animals
is:

Px(y) =

(
40

y

)
pyx(1− px)40−y.

It would give an erroneous result if we would apply
the regression for the empirical values (x, P̂x =
y/40). I.e. if we would suppose that the propor-
tion P̂x of the protected depends linearly from x
(the logarithm of the dose).

It is erroneous, because if we would model the empi-
rical distribution function linearly, then most likely
we would get a model, which may give a probability
in [0, 1] for the investigated doses, but for other rea-
sonable x values the result may fall outside of [0, 1],
which is obviously an erroneous estimate.

Thus it is practical to transform the probability to
be modelled (the observed relative frequency) in a
way before its modelling that the transformed value
can be an arbitrary number in R+.

One of the usual transformations is the so-called ‘lo-
git’ transform.

To this logit transform we first take the odds-ratio
p/(1 − p) of the investigated probability p and its
complement. This is a monotonic transformation of
the probability p, so we get a value in R+.

This odds-ratio is small for small values of p, but it
is spectacularly large for larger values of p (that is
why it is used in gambling).

But the odds-ratio cannot be negative, so its value
is still bounded. That is why it is common to take
the logarithm of this ratio. This way we get the logit
transform of the probability:

` = log

(
p

1− p

)
.

I.e. the logit of to the probability p ∈ (0, 1) is a
one-to-one, monotonically increasing transformation
of the probability p to R.

There are other methods to be used for the same
purpose. The inverse of any univariate distribution
is suitable. E.g. Φ−1, the inverse of the distribution
function of the normal distribution. This is also a
monotonic transformation from [0, 1] → R, and the
value Φ−1(p) is usually called the probit of the pro-
bability.

We shall use the logit transform, but any other func-
tion [0, 1]→ R would do.

Transformations used for this purpose are usually
called ‘link’ functions. The inverse of the link func-
tion is called ‘transmission’ function, which is in case
of the log–transformation

p =
e`

1 + e`
.

Thus we choose a linear regression, for which the lo-
git of the probability of survival is a linear function
of the logarithm of the dose:

log

(
px

1− px

)
≈ a+ bx = `(x)

in a way that by the probability

p̂x =
e`(x)

1 + e`(x)
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the result of the experiment, i.e.

Pa,b(x, y) =
∏

P̂x,y =

(
40

y

)
p̂ y
x (1− p̂x)40−y

should be the largest possible value.

It means that now we do not apply the least squares
method, but we maximize the Pa,b(x, y) probability
of the sample, which depends on the a and b parame-
ters. I.e. we accept those parameter value (a, b) as
estimator, for which the sample is the most probable.

This model fitting method is called maximum likeli-
hood.

Let us compute in R the fitting of the sketched mo-
del!

In our case, as we have a very simple data set,
which is given by 7 numbers, it is the easiest to type
the data immediately to our program. In the next
program-part, the available number of observations
per dose is mi, the number of survivals is yi and the
respective dose is in the variable xi.

xi <- c( 1, 2, 3, 4, 5)
yi <- c( 0, 2,14,19,30)
mi <- c(40,40,40,40,40)
summary(lmI<-glm(cbind(yi,mi-yi)~xi,

family = binomial))

This data set and model has the curiosity that the
applied diagnostic tools qualify 3 variables out of the
5 as crucial, as it is shown by the result of the next
command:

(imI <- influence.measures(lmI))

dfb.1 dfb.xi dffit cov.r cook.d hat
1 -0.81 0.76 -0.81 0.80 0.25 0.26
2 -0.48 0.42 -0.50 2.43 0.26 0.37
3 1.30 -0.92 1.74 0.25 1.29 0.35 *
4 0.00 -0.07 -0.25 3.36 0.08 0.39 *
5 0.29 -0.40 -0.51 5.21 0.36 0.63 *

The process marks those lines with ‘*’, which are
considered as crucial from the point of the regressi-
on.
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V. Analysis of variance (ANOVA)

5.1. The solution of an elementary ANOVA problem in R 84.
5.2. ANOVA: a model and a method 90.
5.3. The basic cases of ANOVA 91.

5.1. The solution of an elementary ANOVA problem in R with a 5-lines program

As an introduction, we present the ANOVA model fitting and interpretation, in a very simple case, omitt-
ing the exact explanations. It is namely easier to understand the general method, if we show first the
solution of a special elementary problem in R.

Let us choose the MASS::npk dataset. This data.frame has 24 observations and 5 variables. The $yields
column gives the pea-yield pro unit area in 24 cases. The other columns describe the circumstances of the
cultivation. $block shows the soil type from the 6 possibilities. The $N, $P, $K variables show if there was
additional nitrogen, phosphorus or potassium treatment.

We first need some preparatory commands. The first loads the MASS package. The name of this package
comes from the book, titled "Venables & Ripley: Modern Applied Statistics with S" to which it was a
supplement. The second command shows the structure of the npk dataset. The third command replaces
the names of the original yields and block variables to the shorter Y and B. The fourth defines a function,
which will be used several times. It gives back the squared length of a vector. Finally, the fifth prints the
first 6 lines of the working data set.

library(MASS)
str(npk)
names(npk)[c(1,5)]<-c("B","Y")
SS<-function(u) as.numeric(crossprod(u))
head(npk)

The main task of this part is the interpretation of the results of the next 5 commands. The first command
fits, prints and saves an ANOVA model to the M object. The next lines provide ’only’ informations to the
understanding of the results. The second line prints the effect and degree of freedom of the members of
the model. The third shows the parameters of the fitted model. The fourth prints statistics about the
parameters of the estimated model. The last, fifth gives the estimated value of the yield for the 6 different
soil types.

(M<-aov(Y∼B,npk))
summary(M)
coef(M)
summary.lm(M)
predict(M,data.frame(B=factor(1:6)))
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First we show the results of the five command lines.
Then we summarize their evaluation. Finally we
interpret the results of the commands separately.

::::
The

::::::::
results

::
of

::::
the

:::::
five

:::::::::::
commands

The result of the (M<-aov(Y∼.,npk)) command:
Call:

aov(formula = Y ~ B, data = npk)

Terms:
B Residuals

Sum of Squares 343.295 533.070
Deg. of Freedom 5 18

Residual standard error: 5.441967
Estimated effects may be unbalanced

The result of the summary(M) command:
Df Sum Sq Mean Sq F value Pr(>F)

B 5 343.29 68.66 2.3184 0.08607 .
Residuals 18 533.07 29.61

The result of the coef(M) command:
(Intercept) B2 B3 B4 B5 B6

54.025 3.425 6.750 -3.900 -3.500 2.325

The result of the summary.lm(M) command:
Call:
aov(formula = Y ~ B, data = npk)

Residuals:
Min 1Q Median 3Q Max

-7.2250 -3.4937 -0.5375 2.1062 11.8750

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.025 2.721 19.855 1.09e-13 ***
B2 3.425 3.848 0.890 0.3852
B3 6.750 3.848 1.754 0.0964 .
B4 -3.900 3.848 -1.013 0.3243
B5 -3.500 3.848 -0.910 0.3751
B6 2.325 3.848 0.604 0.5532

Residual standard error: 5.442 on 18 degrees of freedom
Multiple R-squared: 0.3917, Adjusted R-squared: 0.2228
F-statistic: 2.318 on 5 and 18 DF, p-value: 0.08607

The result of the predict() command:
1 2 3 4 5 6

54.025 57.450 60.775 50.125 50.525 56.350

::::
The

::::::::
general

:::::::::::
evaluation

:::
of

::::
the

:::::::
model

Now we have used only the yield Y and the soil type
B variables from the aov dataset and we looked an

answer for the following question:

"What is the effect of the
soil type to the yield? "

In order to solve this problem, using the Y ∼ B pa-
rametrisation, we chose the following model:

yk = µ+ βBk
+ ek k = 1, . . . , 24.

Here yk, k = 1, . . . , 24 denotes the value of the target
variable, i.e. the pea yield in the different cases. µ
denotes a baseline value, valid for all growing cir-
cumstances. The Bk indices of the β parameters,
k = 1, . . . , 24 gives the soil type of the kth observed
cultivation as given in variable B. As the possible
values of B are 1, . . . , 6, the possible values of βBk

are β1, . . . , β6 according to the soil type of the gi-
ven experiment containing in Bk. Finally, the ek,
k = 1, . . . , 24 values are the errors of the model,
based on the first two parameters. Namely the er-
rors of the model, which defines the yield as the
sum of the µ baseline value and the modifying value
βj, j = 1, . . . , 6, depending on the soil type. We
assume that these ek errors are observed values of
the εk, k = 1, . . . , 24 variables with 0 mean and σ
standard deviation. It is supposed that the variables
εk, k = 1, . . . , 24 are independent from each other
and follow the N (0, σ) distribution (i.e. they have
normal distribution with expectation 0 and standard
deviation σ).

By this model e.g. for the first measurement we
assume that the y1 = 49.5 yield we got is equal to
µ+β1 plus an additional e1 error, as npk$B[1] == 1.
For the fifth observation, the y5 = 59.8 yield is equal
to µ+ β2 + e5, as npk$B[5] == 2, etc.

In the model µ and β1, ..., β6 are the unknown pa-
rameters. The aov() method gave that parameter
set as an estimator for these values, for which the∑24

k=1 e
2
k error sum of squares is minimal.

To a visual interpretation let us choose three 24 di-
mensional points!
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Let Y ∈ R24 be the point, which has coordinates
y1, ..., y24. Let R the point also in R24, which has
coordinates being equal to the model-based estima-
ted values of the target variable, i.e. ŷ1, ..., ŷ24. This
is just the same vector what can be got by the
predict(M) command. Let T be the point in R24,
which has Y in all of the coordinates, i.e. which
has the average of the target variable in each of its
coordinates.

Let us call the Y point as the measurement point,
the R point as model or regression point, the T point
as minimal model or complete average point.
These three points can be calculated as:

Y<-npk$Y
R<-predict(M)
T<-rep(mean(npk$Y),24)

The Y RT∆ triangle we have got by the method abo-
ve is a right angled triangle, so by the Pythagorean
theorem we have

Y R
2

+RT
2

= Y T
2
.

The right angle property can also be proven by the
following command:

c(SS(T-R),SS(R-Y),SS(T-Y))
as the result is a sequence of three such numbers,
for which the third is the sum of the first two:

343.29 533.07 876.36

If we investigate the result of the first aov() and
the second summary() of the above five commands,
then we find the first two numbers in both of them.

The results of aov:

B Residuals
Sum of Squares 343.295 533.070
Deg. of Freedom 5 18

Residual standard error: 5.441967

and the results of summary:

Df Sum Sq Mean Sq F value Pr(>F)
B 5 343.29 68.66 2.3184 0.08607 .
Residuals 18 533.07 29.61

I.e. the sum of squares TR2 is printed under the label
B, and the sum of squares RY

2 is printed under the
label Residuals.

The interpretation of this fact is the following:

The three points are all in R24, but R is in the subs-
pace, which is spanned by the b1, ..., b6 below and T
in the one, which is spanned by t.

t =



1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



, b1 =



1
1
1
1



, b2 =



1
1
1
1



, b3 =



1
1
1
1



, b4 =



1
1
1
1



, b5 =



1
1
1
1



, b6 =


1
1
1
1



.
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I.e. the coordinates of R are the following:

1 2 3 4 5 6
54.025 54.025 54.025 54.025 57.450 57.450

7 8 9 10 11 12
57.450 57.450 60.775 60.775 60.775 60.775

13 14 15 16 17 18
50.125 50.125 50.125 50.125 50.525 50.525

19 20 21 22 23 24
50.525 50.525 56.350 56.350 56.350 56.350

while T is the constant 54.875 all the time.

Let us observe that the above 7 vectors span only
a 6 dimensional subspace, as t equals with the sum
of b1, . . . , b6. I.e. t is in the subspace spanned by
b1, . . . , b6.

As we have searched for the parameter set, which
minimizes the

∑
e2
k and the parametrization looked

for the solution among the linear combinations of
the b vectors, the R point, corresponding to Ŷ is the
projection of Y to the subspace, which is spanned by
b1, . . . , b6.

The projection of the Y point to the line t is the T
point as it is an elementary fact that for any real
numbers y1, . . . , yn the a = y is the constant, which
minimizes

∑
k(yk − a)2.

Taking these two orthogonality into account and
the fact that t is part of the subspace spanned by
b1, . . . , b6 it is also true that the projection of R for
t is also T.

Thus the Residuals in the printout are the distance
of the measurement Y and its projection R to a 6
dimensional subspace. Similarly B is the distance of
R and its projection to the diagonal T.

Thus the results can be interpreted as follows. We
have two models for the measured data: the

yk = µ+ dk k = 1, . . . , 24

minimal model, where the d1, . . . , d24 errors are ob-
served values of such δ1, . . . , δ24 random variables,
which are independent and have identical N (0, σd)
distribution. And the third, the ANOVA model,
which assumes

yk = µ+ βBk
+ ek k = 1, . . . , 24.

By the previous arguments we have T as the app-
roximation of the Y measurements by the minimal

model, similarly if the R is also considered as mea-
surements, then T is the approximation of the R by
the minimal model.

Thus the Residuals x Sum of Squares=533.070
measures the distance between the R approximati-
on and the Y measurements, while the B x Sum of
Squares=343.295 gives the distance between the R
ANOVA model and the T minimal model.

The second line, having the label Deg. of Freedom
of the aov table and the first column of the summary
table, labelled Df gives the degree of freedom of
the previous row, resp. the next column. Here
Residuals x Df=18 and B x Df=5. These degrees
of freedom show the dimensionality of the line seg-
ments, which length we are speaking about.

As while Y, R, T each are a 24 dimensional point,
the line segments YR and RT respectively, lie wit-
hin a subspace, which can be exactly determined.
Namely, YR lies in the 18 dimensional orthogonal
subspace of the subspace spanned by the vectors
b1, . . . , b6 and RT lies in the 5 dimensional subspace
of the subspace spanned by the vectors b1, . . . , b6,
which is orthogonal to the spanned subspace by t.

———

Next we interpret the printout of the 5 commands
applying the geometric interpretation and the two
models (the minimal and the ANOVA).

:::::
First

:::::::::::
command

:::::
line:

:::::::
aov()

The printout of the aov command contains one more
element besides the already seen sum of squares and
degree of freedom, the estimation of the ε errors of
the ANOVA model. This gives:

Residual standard error: 5.44.
This result can also be got by the command

sqrt(SS(Y-R)/18)
ensuring that this value can indeed be considered as
an estimator of the ANOVA error ε, denoted by σ.

This observation is based on the assumption of the
ANOVA model that the y1, . . . , y24 observations ha-
ve independent coordinates, expected value µ+ βBk

and the same σ standard deviation.
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As R is the estimator of µ+ βBk
, the squared length

of the line segment RY can be considered as an est-
imator of the error sum of squares. This sum of
squares have to be divided by 18 instead of 24,
as while RY is in R24, it is orthogonal to the vec-
tors b1, . . . , b6. So we have demonstrated, why is
the Residual standard error an estimator of the
ANOVA variance.

:::::::
Second

::::::::::::
command:

::::::::::::
summary()

In the printout of the summary command there are
four further numbers beyond the ones already shown:

Df Sum Sq Mean Sq F value Pr(>F)
B 5 343.29 68.66 2.3184 0.08607 .
Residuals 18 533.07 29.61

We can observe that the values in the Mean Sq co-
lumn are the ratio of the numbers in the previous
two columns. The number in the F column is the
ratio of the two numbers in the Mean Sq column.

The last, Pr(>F) column contains a single p-value.
This can directly be got by the commands

F<-(SS(R-T)/5)/(SS(Y-R)/18)
1-pf(F,5,18)

Let us observe that the F value is the ratio of the
length of the line segments RT and YR, apart from
normalisation. Thus the F value is large, if the
R ANOVA model is far away from the T minimal
model, comparing the distance between the Y me-
asurement and the R ANOVA model. And if F is
large, the p-value is small, showing that the ANO-
VA model is an important improvement, compared
to the minimal model. On the other side, a large
p-value means that the ANOVA model is not much
better than the minimal one.

The normalisation in the formula can be understo-
od if we consider the following: both distances are
divided by the dimension of the corresponding line
segments, thus the F statistics gives the ratio of the
averages per dimension. Basically, as a general se-
tup we may understand this reasoning as a decision
about a walk from the T point towards the measure-
ment Y. Now there is just one ANOVA model we
investigate, so we have one intermediate point, the
R. It is worth undertaking this step TR, if it is long
enough, compared to RY, taking into account the
increase in the number of parameters as well.

It is worth taking these normalised squared distan-
ces, as if β1 = · · · = β6, then the TR and RY (random)
line segments are independent normally distributed
vectors, thus the computed variable has F distri-
bution. Thus the p-value in the last column has
uniform[0, 1] distribution in this case, which means
that the [0, α] interval can be applied as an optimal
critical set at level α, as we have already seen in
Section 4.

The p-value is linked to the hypothesis test, where
H0 is that the he observed values of the target vari-
able are from the minimal model, and the H1 is that
the observed values of the target variable come from
the ANOVA model. In other words, under H0 the
β values are equal, while under H1 there is at least
one that differs from the rest.

Thus in our case, when the p-value is 0.086, then
at the level of 10% we must reject the equality of the
β values, while at the level of 5% we must accept it.

::::::
Third

:::::::::::
command:

:::::::::
coef()

The third command, coef prints out the parameters
of the fitted model. As we see, in our case this list
contains the (Intercept) B2 B3 B4 B5 B6 values.
So B1 is missing!

The reason for it is that the previously defined
ANOVA model is overparametrised. Thus a mo-
del with parameters µ, β1, . . . , β6 fits the mea-
sured data just as well as for an arbitrary d the
µ − d, β1 + d, . . . , β6 + d. This problem has been
solved in our case so that the value B1 was chosen
as 0, which is not contained in the printout, where
we get the values of the (Intercept) and the B2 B3
B4 B5 B6 parameters.

:::::::
Fourth

:::::::::::
command:

::::::::::::::::
summary.lm()

The result of the summary.lm command is the same
as the one we get in case of a linear regression, for
continuous explanatory variables.

As it can be seen the printouts of this command con-
sists of four parts. These are the following: 1.) The
essential part of the command, which resulted in the
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creation of M; 2.) Some statistics for the residuals;
3.) The estimation of the coefficients and their sta-
tistical evaluation; 4.) Some statistics about the aov
model in general.

The essential part in our case is the third part about
the coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.025 2.721 19.855 1.09e-13 ***
B2 3.425 3.848 0.890 0.3852
B3 6.750 3.848 1.754 0.0964 .
B4 -3.900 3.848 -1.013 0.3243
B5 -3.500 3.848 -0.910 0.3751
B6 2.325 3.848 0.604 0.5532

The first column of the table gives the estimators
for the model parameters, which we have already
seen. The second is the standard error of these est-
imators. The third, the t value is the ratio of the
first two columns. The fourth is the p-value of the
t value. I.e. the probability that a number with
the t18 distribution is larger in absolute value than
the t value we have got.

This latter statement can easily be checked by the
commands

w<-summary.lm(M)$coef
round(2*pt(-abs(w[,"t value"]),18),5)
round(w[,"Pr(>|t|)"],5)

The statistics of summary.lm(M) are suitable to de-
cide about the separate null hypotheses whether the
parameters are equal to zero.

In our case the answer is clear about the
(Intercept), which is the estimator of the µ pa-
rameter. If µ were equal to zero, then the probabi-
lity would be very small that we get this or an even
larger t value. Thus we reject the hypothesis of
µ = 0. The situation about B3, i.e. the estimator of
β3 is not as clear. If we calculate with a 10% first
type error probability, then it is justified to reject
the β3 = 0 hypothesis. But at the level of 5% we
must accept that B3=0, similar to the other para-
meters, which have such a small difference from 0
(compared to their standard deviation) that a larger
deviation would have a probability of 30-50% even
for a parameter having 0 value, in case of the given
sample size and number of parameters.
The printout of the fourth part of the fourth com-
mand:

Residual standard error: 5.442 on 18 degrees of freedom
Multiple R-squared: 0.3917, Adjusted R-squared: 0.2228
F-statistic: 2.318 on 5 and 18 DF, p-value: 0.08607

Here we see essentially the same statistics, which we
have got earlier by the aov and the summary com-
mands.

The R2 and adjR2 of the second line are new. These
results can be got by the commands

(r2<-cor(Y,predict(M))ˆ2)
SS(R-T)/SS(Y-T)
1-23*(1-r2)/18

as well, and these command lines give at the same
time the interpretation of the given statistics.

The first line shows that R2 is the correlation bet-
ween the target value and its approximations. The
second line gives an interpretation why is it common
to call the value of R2 as ’interpreted proportion of
deviation’. Its value is now 0.3917, and here we
have calculated the ratio of the squared differences
of R from the model average and the differences of Y
from the model average. The third line shows, how
can the adjusted R2 be calculated from R2. For a
more detailed explanation of these coefficients see
the chapter on regression.

:::::
Fifth

:::::::::::
command

:::::
line:

::::::::::::
predict()

The last row of the five command lines show, how
can the model got by the aov command be applied.

The first argument of the predict() command is
the M model, the second is a data.frame with all
the possible values of the variable B (in our case
(1,2,. . . ,6)), which are assumed by the M model as
explanatory variables. The result of this command
is the estimated value of Y for all possible values of B.

We may get the same result by the command lines
b<-coef(M)
c(b[1],b[1]+b[-1])

as well.

It may be a question, why must the parameters be
interpreted this way? The practical result is that
the program calculated the estimations by assuming
β1 being equal to 0. We come back with a more
complete answer later.

The problem is the fact that – as we have seen – t is
an element of the spanned subspace by the b1, . . . , b6

vectors. The definition of the points R and T is una-
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nimous. The only question is, how should this be
expressed by the t and b vectors. One possible way
is setting β1 equal to 0, as it is done by the program.
But it would be possible to define any other β as
0. Or we could have define them as their sum being
equal to 0. If another β would be a structural zero,
then it could be interpreted as the baseline being
the result of this β. If the sum of the β values would
be 0, then it would mean that the average effect of
the B factor is zero.

But how can we know that the system uses the

β1 == 0 assumption?
This is shown by the result of the

M$contrasts
command, as seen by the

$B
[1] "contr.treatment"

lines.
Namely, the calculation method of the so-called cont-
rasts (the β values) was "treatment". If it were
"sum", then B6 would be missing, and its value wo-
uld be not zero, but -(B1+..+B5).

5.2. ANOVA as a model and a method

The ANOVA model is a linear model, where the target variable is continuous and where all the explanatory
variables are discrete, i.e. such that the number of its possible values are finite. The ANOVA model is fitted
using the methodologies of the regression. And we check if the fitted more complicated model is better
than the simpler ones, by using the methods of the ANOVA. Thus the notion of ANOVA has two meanings:
first it is a model, second it is a method, similarly to the regression.

As methods, both regression and ANOVA should be applied in all linear models. Both are a technique.
Regression methods determine the optimal parameters of a model. ANOVA helps to decide if the fitted
model is good enough.

In spite of the possible confusion caused by the twofold meaning of the notions, it is natural to use the
name of the two methods for the models, as in case of continuous explanatory variables the fitting, while
for discrete explanatory variables the model checking is the most important question.

The linear models may have many more parameters in case of discrete explanatory variables. As one is
tempted to link a separate parameter to each of the possible values, or even possibly to some combinations
of values. Thus in case of the discrete variables the possible decrease of the number of parameters is in the
focus.

ANOVA has got its name from the method, that allows us to decide if a model with fewer parameters is
essentially as good as a one having more parameters. We investigate, whether the errors of the two models
have the same standard deviations?

:::::
5.2.1.

::::::
The

:::::::
history

:::
of

::::
the

::::::
name

The name ‘ANOVA’ has its origins back in the ages,
when there were no computers available, so the mo-
dels were fitted only in cases when one had the same
number of observations for every combination of the

explanatory variables. In this case the statistics, to-
gether with the estimators of the parameters can ea-
sily be calculated by computing averages, differences
and squares.
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5.3. The basic cases of ANOVA

:::::::::
Example

:::
1:

:::::::::
ANOVA

::::
for

::::
one

:::::::
factor

Let us repeat the model of the introduction, but now
focusing more on the data analytic part.

The npk is a frequently cited dataset of the MASS
package, which is also to be found in the datasets
package, available immediately after starting the
system.

The contents of the data npk is the following:

No B N P K Y No B N P K Y
1 1 0 1 1 49.5 13 4 1 0 0 62.0
2 1 1 1 0 62.8 14 4 1 1 1 48.8
3 1 0 0 0 46.8 15 4 0 0 1 45.5
4 1 1 0 1 57.0 16 4 0 1 0 44.2
5 2 1 0 0 59.8 17 5 1 1 0 52.0
6 2 1 1 1 58.5 18 5 0 0 0 51.5
7 2 0 0 1 55.5 19 5 1 0 1 49.8
8 2 0 1 0 56.0 20 5 0 1 1 48.8
9 3 0 1 0 62.8 21 6 1 0 1 57.2

10 3 1 1 1 55.8 22 6 1 1 0 59.0
11 3 1 0 0 69.5 23 6 0 1 1 53.2
12 3 0 0 1 55.0 24 6 0 0 0 56.0

The 24 lines show the pea yield (Y≡ yield) in 6 blocks
(B≡ block), under two different (0//1) level of nitro-
gen (N), phosphorus (P) or potassium (K) treatment.

In order to get a good overview of the sample results,
we join the groups no. 1 and 2, 3 and 4, 5 and 6 as
follows:

levels(npk[,1])<-c(1,1,2,2,3,3)
names(npk)[c(1,5)]<-c("B","Y")

As a result of these commands we have also rena-
med the block and the yield variables. Thus there
are 3 groups with respect of the B variable with 8
observations in every group, and the yield amount
is contained by the variable Y. This can also be seen
from the results of the following commands.

ls()
names(npk)
table(npk[,1])

The first show that there is indeed a new npk varia-
ble in ‘.GlobalEnv’. The result of the second is the
list of the column names of this variable: B, N, P, K
and Y. As the result of the last one, the observations
can be divided into 3 groups with respect of the B
grouping variable and we have 8 observations in each
group.

Let us consider the modified dataset npk and in-
vestigate the pea yield in the 3 different levels of the
variable B with the help of the boxplot command:

boxplot(Y∼B,npk)

The three boxes with whiskers graphically show
some of the basic statistics of the yields in the th-
ree groups. The red line corresponds to the median
of the group, the orange boxes are bounded by the
quartiles and the whiskers last till the minimum-
maximum values in the groups.

We could have used the range parameters of the
boxplot() command. This defines the maximum
length of the whiskers in comparison of the box
width (the interquartile range). Its default value is
1.5 times. If there are values outside of this range,
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then these are drawn separately by circles.

We can calculate these statistics for each group by
using a suitable parametrization of the aggregate
command. The number of observations can be got
as follows:

aggregate(npk$Y,npk["B"],length)
The others by replacing length by median, IQR,
mean and sd respectively. The last column is the est-
imated standard deviation of the mean, i.e. SD/

√
n.

N Med IQR Mean SD SE
g1 8 56.5 4.85 55.74 5.27 1.86
g2 8 55.4 14.22 55.45 8.98 3.17
g3 8 52.6 5.22 53.44 3.63 1.28

Considering the previous figure and the above tab-
le, we cannot be sure that the expected value of the
groups is different. The differences in the Mean are
small, especially if we consider the SE as well. How
can we formulate our question about the possible
equality of the three groups more precisely and how
can we give an exact answer to it?
Formulated for the npk dataset, the typical hypot-
hesis of the ANOVA model is the following.

‘Is it true, that the
yield is equal in the blocks?’

Formulating this in the language of the hypothesis
testing, we have two models for the data. The M0
minimal model and the M1 ANOVA model, as fol-
lows:

M0: yi,j = µ0 + di,j
M1: yi,j = µ1 + βi + ei,j

Here i = 1, . . . , g shows the group of the observati-
on and j = 1, . . . , ni the number of yi,j within the
group. We have assumed that the observations can
be divided into g groups, in the ith group there are
ni observations, the total number of observations is∑g

i=1 ni = n. We assume that the di,j and the ei,j
are realisations of such random variables, which are
independent, with 0 mean, identical standard devi-
ation and normal distribution.

Both models include a baseline value µ0 resp. µ1 for
the observations, which does not depend on the gro-
up. The β1, . . . , βg values give the differences of the
expectations in the group from this baseline value.

Without any further conditions the M1 model is over-
parametrized. Let us ensure the uniqueness – in
accordance to the default in R – so that we take a

parameter system, where β1 = 0.

The decision for the hypothesis can be given by the
ANOVA table, which can be got by the command

(M<-aov(Y∼B,npk))

B Residuals
Sum of Squares 25.13 851.24
Deg. of Freedom 2 21

Residual standard error: 6.36672
Estimated effects may be unbalanced

The model we got can be summarised by the
summary(M) command:

Df SumSq MeanSq Fvalue Pr(>F)
B 2 25.13 12.56 0.31 0.74
Residuals 21 851.24 40.54

This last result show that the p-value of the samp-
le is 0.7368. Thus it has a large probability, that
under the same conditions taking the same number
of observations, we get a larger F -value than the
current one. Thus we do not have to reject the null
hypothesis,

‘Based on the one-factor ANOVA it can be accepted
that the expected value of the yield is the same in the
three blocks.’

Let us study the results in some detail!

The last table is called the decomposition of the Sum
of Squares (SS). Its structure is almost like a stan-
dard within the area of the linear models. Quite
often a last row is added, which contains the sums
of the first two columns:

Df SumSq MeanSq Fvalue Pr(>F)
B 2 25.13 12.56 0.31 0.74
Residuals 21 851.24 40.54
Total 23 876.36

The Residual row corresponds to the ‘Within Gro-
ups’ and the B row to the ‘Between Groups’ sum of
squares.

The Df column is the degree of freedom of the expr-
essions in the given row . In the B (Between Groups)
row we have 2, as the number of groups is g = 3,
and the degree of freedom of this component is g−1.

In the Residual (Within Groups) row we have 21,
as the number of observations is n = 24, and the
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degree of freedom of this component is always n− g.

In the MeanSq column there are the mean squa-
res. This is the ratio of the previous two columns.
25.13/2=12.56 and 851.24/21=40.54.

TheFvalue is the ratio of the two MeanSq values:
Fvalue = 12.56/40.54 ≈ 0.31.

The last number in the table is a p-value. The
probability that a random number from the F2,21

distribution is larger than the Fvalue we have got
is, 1− pf(.31, 2, 21) which is indeed ≈ 0.737.

Namely the Fvalue has F2,21 distribution under the
given conditions, if the expected value of the three
groups is equal. The result we have got can thus
be interpreted as follows: the probability that the
same statistics for a similar experiment under the
equality of the group expectations is with a probabi-
lity of ≈ 0.737 larger than the Fvalue we have got.
This is a large probability, so we cannot reject the
hypothesis of the equality. That we intend to reject
this hypothesis if the Fvalue is large, can be dedu-
ced from the fact that the Fvalue is large if SS.B is
large compared to SS.R.
We can get the estimated pea yield from
the aov model for the groups by the
predict(M,data.frame(B=factor(1:3))) com-
mand:

1 2 3
55.7375 55.4500 53.4375

These estimators coincide with the group-averages,
which we have already seen at the beginning of our
analysis.

The predict(M) command calculates with the follo-
wing coefficients:

(Intercept) B2 B3
55.7375 -0.2875 -2.3000

This can be got by the
coefficients(M)

command, which can be abbreviated as coef(M). As
it can be seen, the baseline value (Intercept) is the
average of the first group. The further coefficients
are the differences between the group means of code
‘2’ and ‘3’ and the baseline.

The oneway.test() command

If we do not need the above mentioned more comp-
licated statistics, just a hypothesis test about the
equality of the expectations, then the command

oneway.test(Y ~ B, npk, var.equal=TRUE)

is also suitable. The result:

One-way analysis of means
Data: Y and B
F=0.31, num.df=2, denom.df=21, p-value=.74

corresponds to the previous ones.

The var.equal=TRUE option means that the stan-
dard deviations are equal in the three groups with
respect of B. If we use the default FALSE option for
the equality of the standard deviations, then we get
an answer by a method that does not use this equa-
lity.

:::::::::
Example

:::
2:

:::::::::
ANOVA

:::
in

:::::
case

:::
of

:::::::
several

::::::::
factors

Until now, in the investigated cases, there was just
one factor. If we have more grouping factors, then
it can be checked if the expected value of the target
variable is the same in the groups which may be
got by taking into consideration more factors at the
same time.

If we have two grouping variables A and B, which
have r resp. c values, then the question can be abo-
ut the equality of the expectations in the r×c groups.

But this question can be answered by the one-factor
model. We just have to replace (A, B) by X, which
is an artificial grouping variable with rc possible
values, corresponding to the all possible level combi-
nations of the two variables. And the investigation
can be carried out as a one-factor ANOVA for X.

But this simplification causes two major potential
problems:
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This model has many more parameters than the
one-way model. X has 1 + (rc− 1) parameters, while
the two one-way models 1 + (r− 1) resp. 1 + (c− 1).

If we get that the groups do not have the same
expectations, then we cannot decide, which factor
(R or C) is the reason for this difference.

Thus we introduce a new model. This model is
simpler than the product model we have just seen.
Here we consider the effect of the factors additively.
This results in an intermediate model, which has
1 + (r− 1) + (c− 1) parameters.

Formally:

Let the observed values be ξi,j,k, i = 1, ..., r ,
j = 1, ..., c k = 1, ...,mi,j, where ξi,j,k has type i
with respect of the first factor, type j according to
the second, and it is the kth among these observa-
tions. So mi,j is the number of observation under
the circumstance (i, j).

Now we suppose that mi,j = m, i.e. there is an equ-
al number of observations in each cell. Under this
condition the design matrix of the observations is
orthogonal. This ensures that the effect of a factor
can be considered as being independent from the
effects of the other factors.

The model, interpreting the target variable by A:

ξi,j,k = µ+ αi + εi,j,k

The model, interpreting the target variable by B:

ξi,j,k = µ+ βj + εi,j,k

The model, interpreting the target variable by A+B:

ξi,j,k = µ+ αi + βj + εi,j,k

We assume that the εi,j,k errors are independent, ha-
ve 0 expected value and the same standard deviation.

Thus for two possible factors, including the

ξi,j,k = µ+ εi,j,k

model, we have altogether five models, where the
number of parameters is r, c, r + c − 1, rc resp. 1.
All of these models is an ANOVA model, and the two-
way ANOVA method helps us to find the one, which is
the simplest of these, with the property that neither
of the more complicated ones are significantly better.

If we have more factors, then we choose the subsets
of these explanatory variables on a way that if a
subset is chosen, than all of its subsets are chosen as
well.

If the effect belongs to a subset with more than one
elements, then it is called cross effect. If the sub-
set, corresponding to the effect has just one element,
then it is called main effect. The number of elements
is called the order of the effect. E.g. the previous
γ is a second-order effect, while the main effects are
first-order effects.

In the investigated model we approximate the ob-
served value by the sum of the effects, which were
considered. Thus in the model to each observed
value there are exactly as many parameters as the
number of the chosen factors.

We assume as usual, that the errors are independent,
normally distributed with 0 expected value and σ
standard deviation.

We show the main features of the method in a new
data set.

The ToothGrowth data set has a size of 60 × 3. It
shows the effect of the vitamin C (ascorbic acid) to
the tooth growth of guinea pigs (len). (C.I. Bliss:
The Effect of Vitamin C on Tooth Growth in Gui-
nea Pigs, The Statistics of Bioassay, Academic Press,
1952).

The dose of the vitamin C (dose) had three levels
(0.5, 1.0 and 2.0 mg). The source (supp) could be
orange juice (OJ) or a pill (VC).

We have exactly 10 observations for each of the 3×2
possibilities, so this is an orthogonal design.

So if we assume that both factors have an effect,
then it can be formulated as

len∼dose+supp.

Let us suppose as above, that the observations are
ξi,j,k where i = 1, 2, 3, j = 1, 2 and k = 1, 2, 3, 4. The
assumed model:

ξi,j,k = µ+ αi + βj + εi,j,k

where µ is the baseline value, α is the effect of the
dose with

∑3
i=1 αi = 0, and β is the effect of the
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method (supp), with
∑2

j=1 βj = 0, and εi,j,k is the
error.

Another model is

ξi,j,k = µ+ αi + βj + γi,j + εi,j,k

where also the interaction is included. In order to
ensure the uniqueness, we assume for the interacti-
on that

∑3
i=1 γi,j = 0 and

∑2
j=1 γi,j = 0. We shall

express this model in aov as
len∼dose*supp.

The ToothGrowth data is also included in the
datasets library. This time we create again a mo-
dified version, especially as in the original the dose
variable is not a factor. And we also modify the
name of the doses from ‘0.5’, ‘1’, ‘2’ to ‘L’, ‘M’, ‘H’.

ToothGrowth$dose<-factor(ToothGrowth$dose)
levels(ToothGrowth$dose)<-c("L","M","H")
ToothGrowth$dose<-C(ToothGrowth$dose,sum)
ToothGrowth$supp<-C(ToothGrowth$supp,sum)

The parameters and the statistics can be calculated
as follows:

M<-aov(len~dose+supp,ToothGrowth)
summary(M)
summary.lm(M)

The usual table with the decomposition of the sum
of squares:

Df Sum.Sq Mean.Sq F.value Pr(>F)
dose 2 2426.43 1213.22 82.811 <2e-16
supp 1 205.35 205.35 14.017 0.0004
Res 56 820.43 14.65

The coefficients of the fitted model:

Coefficients:
Estimate S.E t.value Pr(>|t|)

(Incept) 18.8133 0.4941 38.073 <2e-16
dose1 -8.2083 0.6988 -11.746 <2e-16
dose2 0.9217 0.6988 1.319 0.1926
supp1 1.8500 0.4941 3.744 0.0004

We have the following results:
- The table shows that both effects are significant.
- However, just one of the groups differs signifi-

cantly from 0. Thus the mean value in group ‘2’ can
be considered as being equal to the baseline value.

To fit a model with interactions we need the follo-
wing command:

M<-aov(len~dose*supp,ToothGrowth)
summary(M)
summary.lm(M)

The most important parts of the result:

The table for the decomposition
of the sum of squares :

Df Sum Sq Mean Sq F.val Pr(>F)
dose 2 2426.43 1213.22 92.0 <2e-16
supp 1 205.35 205.35 15.6 0.0002
dose:supp 2 108.32 54.16 4.1 0.0219
Residuals 54 712.11 13.19

The parameters of the fitted model:

Coefficients:
Estimate S.E t.value Pr(>|t|)

(Incept) 18.8133 0.4688 40.130 <2e-16
dose1 -8.2083 0.6630 -12.381 <2e-16
dose2 0.9217 0.6630 1.390 0.1702
supp1 1.8500 0.4688 3.946 0.0002
dose1:supp1 0.7750 0.6630 1.169 0.2476
dose2:supp1 1.1150 0.6630 1.682 0.0984

It must be mentioned, that
- as the plan is orthogonal, the estimators of those

parameters do not change, that were already inclu-
ded in the narrower model.
- As the model has size 3 × 2, to the interaction

there are (3− 1)(2− 1) = 2 parameters.
- It is interesting that while the table shows a sig-

nificant interaction term, neither of its parameters
differ significantly from 0.

The ‘F.val’ columns are the ratio of the actual
Sum.Sq and the Residual Sum.Sq – as before –,
normed with the corresponding degrees of freedom.

Other functions, related to the ANOVA models:

fitted() or fitted.values(): the ŷ, i.e. the
approximations to y by the model;
proj(): the same as the one before, but it gives

the values of the factors as well;
residuals(): the differences y − ŷ i.e. the error

of the model in the observation points;
model.tables(): the model parameters (effects)

in a tabulated form;
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model.tables(., "means"): the default of this
parameter is effects if we overwrite it as shown,
then we get the averages for the groups of observa-
tions;

model.tables(., se=TRUE) (an option to the pre-
vious command): we get the standard deviations of
the parameters as well.
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